BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35913021)

  • 1. Exploiting synergistic effects of brittle and plastic excipients in directly compressible formulations of sitagliptin phosphate and sitagliptin hydrochloride.
    Zakowiecki D; Edinger P; Papaioannou M; Hess T; Kubiak B; Terlecka A
    Pharm Dev Technol; 2022 Jul; 27(6):702-713. PubMed ID: 35913021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A formulation strategy for solving the overgranulation problem in high shear wet granulation.
    Osei-Yeboah F; Zhang M; Feng Y; Sun CC
    J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microcrystalline cellulose on liquid penetration in and disintegration of directly compressed tablets.
    Lerk CF; Bolhuis GK; de Boer AH
    J Pharm Sci; 1979 Feb; 68(2):205-11. PubMed ID: 423092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials.
    Gohel MC; Jogani PD; Bariya SE
    Pharm Dev Technol; 2003; 8(2):143-51. PubMed ID: 12760565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures.
    Reynolds GK; Campbell JI; Roberts RJ
    Int J Pharm; 2017 Oct; 531(1):215-224. PubMed ID: 28823886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound transmission measurements for tensile strength evaluation of tablets.
    Simonaho SP; Takala TA; Kuosmanen M; Ketolainen J
    Int J Pharm; 2011 May; 409(1-2):104-10. PubMed ID: 21356298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of various excipients on tizanidine hydrochloride tablets prepared by direct compression.
    Khan LG; Razvi N; Anjum F; Siddiqui SA; Ghayas S
    Pak J Pharm Sci; 2014 Sep; 27(5):1249-54. PubMed ID: 25176379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous-Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules?
    Grote S; Kleinebudde P
    J Pharm Sci; 2018 Apr; 107(4):1104-1111. PubMed ID: 29247739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directly compressible formulation of immediate release rosuvastatin calcium tablets stabilized with tribasic calcium phosphate.
    Zakowiecki D; Hess T; Cal K; Mikolaszek B; Garbacz G; Haznar-Garbacz D
    Pharm Dev Technol; 2022 Apr; 27(4):425-434. PubMed ID: 35499305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of fujicalin, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate.
    Schlack H; Bauer-Brandl A; Schubert R; Becker D
    Drug Dev Ind Pharm; 2001 Sep; 27(8):789-801. PubMed ID: 11699830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR
    Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression.
    Domínguez-Robles J; Stewart SA; Rendl A; González Z; Donnelly RF; Larrañeta E
    Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison studies on the percolation thresholds of binary mixture tablets containing excipients of plastic/brittle and plastic/plastic deformation properties.
    Amin MC; Fell JT
    Drug Dev Ind Pharm; 2004; 30(9):937-45. PubMed ID: 15554218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties.
    Chaheen M; Bataille B; Yassine A; Belamie E; Sharkawi T
    J Pharm Sci; 2019 Oct; 108(10):3319-3328. PubMed ID: 31145923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of formulation composition and processing on the content uniformity of low-dose tablets manufactured at kilogram scale.
    Morris DG; Truitt BF; Kong A; Leyva N; Luner PE
    Pharm Dev Technol; 2009; 14(5):451-60. PubMed ID: 19552558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphates in pharmaceutical tableting. 2. Comparison of tableting properties.
    Schmidt PC; Herzog R
    Pharm World Sci; 1993 Jun; 15(3):116-22. PubMed ID: 8348107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.