These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35913200)
1. Janus Hydrogel to Mimic the Structure and Property of Articular Cartilage. Luo C; Guo A; Li J; Tang Z; Luo F ACS Appl Mater Interfaces; 2022 Aug; 14(31):35434-35443. PubMed ID: 35913200 [TBL] [Abstract][Full Text] [Related]
2. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Ren H; Guo A; Luo C Carbohydr Polym; 2024 Mar; 328():121738. PubMed ID: 38220330 [TBL] [Abstract][Full Text] [Related]
3. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Luo C; Guo A; Zhao Y; Sun X Carbohydr Polym; 2022 Jun; 286():119268. PubMed ID: 35337498 [TBL] [Abstract][Full Text] [Related]
4. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Gan S; Lin W; Zou Y; Xu B; Zhang X; Zhao J; Rong J Carbohydr Polym; 2020 Feb; 229():115523. PubMed ID: 31826442 [TBL] [Abstract][Full Text] [Related]
5. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. Li F; Wang A; Wang C J Mater Sci Mater Med; 2016 May; 27(5):87. PubMed ID: 26970769 [TBL] [Abstract][Full Text] [Related]
6. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Fang J; Li P; Lu X; Fang L; Lü X; Ren F Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515 [TBL] [Abstract][Full Text] [Related]
7. Tribological properties of PVA/PVP blend hydrogels against articular cartilage. Kanca Y; Milner P; Dini D; Amis AA J Mech Behav Biomed Mater; 2018 Feb; 78():36-45. PubMed ID: 29132099 [TBL] [Abstract][Full Text] [Related]
8. Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage. Chen Q; Zhang X; Chen K; Feng C; Wang D; Qi J; Li X; Zhao X; Chai Z; Zhang D ACS Appl Mater Interfaces; 2022 Nov; 14(46):52347-52358. PubMed ID: 36349936 [TBL] [Abstract][Full Text] [Related]
9. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Shi Y; Xiong D; Liu Y; Wang N; Zhao X Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():172-80. PubMed ID: 27157740 [TBL] [Abstract][Full Text] [Related]
10. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Bi S; Wang P; Hu S; Li S; Pang J; Zhou Z; Sun G; Huang L; Cheng X; Xing S; Chen X Carbohydr Polym; 2019 Nov; 224():115176. PubMed ID: 31472871 [TBL] [Abstract][Full Text] [Related]
11. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications. Chen Y; Song J; Wang S; Liu W Macromol Biosci; 2023 Jan; 23(1):e2200275. PubMed ID: 36254859 [TBL] [Abstract][Full Text] [Related]
12. Novel β-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Yao H; Kang J; Li W; Liu J; Xie R; Wang Y; Liu S; Wang DA; Ren L Biomed Mater; 2017 Dec; 13(1):015012. PubMed ID: 28792423 [TBL] [Abstract][Full Text] [Related]
13. A robust, low swelling, and lipid-lubricated hydrogel for bionic articular cartilage substitute. Xiao F; Tang J; Huang X; Kang W; Zhou G J Colloid Interface Sci; 2023 Jan; 629(Pt A):467-477. PubMed ID: 36088692 [TBL] [Abstract][Full Text] [Related]
14. Development and characterization of Poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement. Maiolo AS; Amado MN; Gonzalez JS; Alvarez VA Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1490-5. PubMed ID: 24364950 [TBL] [Abstract][Full Text] [Related]
15. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair. Chen Y; Song J; Wang S; Liu W Macromol Biosci; 2021 Oct; 21(10):e2100147. PubMed ID: 34272821 [TBL] [Abstract][Full Text] [Related]
16. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement. Wang Z; Meng F; Zhang Y; Guo H Langmuir; 2023 Feb; 39(6):2368-2379. PubMed ID: 36725688 [TBL] [Abstract][Full Text] [Related]
17. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. Chocholata P; Kulda V; Dvorakova J; Supova M; Zaloudkova M; Babuska V Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502243 [TBL] [Abstract][Full Text] [Related]
18. Tough Engineering Hydrogels Based on Swelling-Freeze-Thaw Method for Artificial Cartilage. Hao M; Wang Y; Li L; Liu Y; Bai Y; Zhou W; Lu Q; Sun F; Li L; Feng S; Wei W; Zhang T ACS Appl Mater Interfaces; 2022 Jun; 14(22):25093-25103. PubMed ID: 35606333 [TBL] [Abstract][Full Text] [Related]
19. High biocompatible polyacrylamide hydrogels fabricated by surface mineralization for subchondral bone tissue engineering. Hu Y; Kang M; Yin X; Cheng Y; Liu Z; Wei Y; Huang D J Biomater Sci Polym Ed; 2023 Dec; 34(16):2217-2231. PubMed ID: 37368489 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyapatite gradient on poly (vinyl alcohol) hydrogels surface to mimic calcified cartilage zone for cartilage repair. Shi L; Chen J; Tian Y; Ren L J Biomater Appl; 2022 Apr; 36(9):1579-1587. PubMed ID: 35156450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]