These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35913257)
1. Nitrogen plasma modification boosts up the hemocompatibility of new PVDF-carbon nanohorns composite materials with potential cardiological and circulatory system implants application. Zięba M; Rusak T; Misztal T; Zięba W; Marcińczyk N; Czarnecka J; Al-Gharabli S; Kujawa J; Terzyk AP Biomater Adv; 2022 Jul; 138():212941. PubMed ID: 35913257 [TBL] [Abstract][Full Text] [Related]
2. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation. Chang Y; Shih YJ; Ko CY; Jhong JF; Liu YL; Wei TC Langmuir; 2011 May; 27(9):5445-55. PubMed ID: 21449586 [TBL] [Abstract][Full Text] [Related]
3. Preliminary investigation on hemocompatibility of poly(vinylidene fluoride) membrane grafted with acryloylmorpholine via ATRP. Shen X; Liu J; Feng X; Zhao Y; Chen L J Biomed Mater Res A; 2015 Feb; 103(2):683-92. PubMed ID: 24789814 [TBL] [Abstract][Full Text] [Related]
4. Polydopamine/cysteine surface modified hemocompatible poly(vinylidene fluoride) hollow fiber membranes for hemodialysis. An Z; Dai F; Wei C; Zhao Y; Chen L J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2869-2877. PubMed ID: 29536617 [TBL] [Abstract][Full Text] [Related]
5. Dual functionalized poly(vinylidene fluoride) membrane with acryloylmorpholine and argatroban to improve antifouling and hemocompatibility. Xu R; Feng Q; He Y; Yan F; Chen L; Zhao Y J Biomed Mater Res A; 2017 Jan; 105(1):178-188. PubMed ID: 27588950 [TBL] [Abstract][Full Text] [Related]
7. Nitric-Acid Oxidized Single-Walled Carbon Nanohorns as a Potential Material for Bio-Applications-Toxicity and Hemocompatibility Studies. Zieba W; Czarnecka J; Rusak T; Zieba M; Terzyk AP Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33804062 [TBL] [Abstract][Full Text] [Related]
8. In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts. Cutiongco MF; Anderson DE; Hinds MT; Yim EK Acta Biomater; 2015 Oct; 25():97-108. PubMed ID: 26225735 [TBL] [Abstract][Full Text] [Related]
9. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Wei Z; Tian P; Liu X; Zhou B Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbon nitride synthesized by different modification strategies on the performance of carbon nitride/PVDF photocatalytic composite membranes. Gao B; Dou M; Wang J; Zhuang T; Li P; Yang F; Wang D; Ci L; Fu Y J Hazard Mater; 2022 Jan; 422():126877. PubMed ID: 34425428 [TBL] [Abstract][Full Text] [Related]
11. Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP. Jiang J; Zhang P; Zhu L; Zhu B; Xu Y J Mater Chem B; 2015 Oct; 3(39):7698-7706. PubMed ID: 32264579 [TBL] [Abstract][Full Text] [Related]
12. Anti-biofouling microfiltration membranes based on 1-vinyl-3-butylimidazolium chloride grafted PVDF with improved bactericidal properties and vitro biocompatibility. Zhang X; Liang Y; Ni C; Li Y Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111411. PubMed ID: 33255013 [TBL] [Abstract][Full Text] [Related]
13. Effect of the oxygenic groups on activated carbon on its hemocompatibility. Yue Z; Xiaoli G; Juan Z; Qun W; Feng W; Yongke Z Colloids Surf B Biointerfaces; 2024 Jan; 233():113655. PubMed ID: 37988821 [TBL] [Abstract][Full Text] [Related]
14. A facile method for grafting functional hydrogel films on PTFE, PVDF, and TPX polymers. Fischer T; Tenbusch J; Möller M; Singh S Soft Matter; 2022 Jun; 18(22):4315-4324. PubMed ID: 35621021 [TBL] [Abstract][Full Text] [Related]
15. Optical Properties of Composites Based on Poly(o-phenylenediamine), Poly(vinylenefluoride) and Double-Wall Carbon Nanotubes. Baibarac M; Daescu M; Matei E; Nastac D; Cramariuc O Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361025 [TBL] [Abstract][Full Text] [Related]
16. Scalable novel PVDF based nanocomposite foam for direct blood contact and cardiac patch applications. Arumugam R; Chinnadurai RK; Subramaniam BN; Devaraj B; Subramanium V; Sekhar SE; Nallani S J Mech Behav Biomed Mater; 2018 Dec; 88():270-280. PubMed ID: 30196182 [TBL] [Abstract][Full Text] [Related]
17. Surface fluorination of polylactide as a path to improve platelet associated hemocompatibility. Khalifehzadeh R; Ciridon W; Ratner BD Acta Biomater; 2018 Sep; 78():23-35. PubMed ID: 30036719 [TBL] [Abstract][Full Text] [Related]
18. Strategy for the hemocompatibility testing of microparticles. Braune S; Basu S; Kratz K; Johansson JB; Reinthaler M; Lendlein A; Jung F Clin Hemorheol Microcirc; 2016; 64(3):345-353. PubMed ID: 27886001 [TBL] [Abstract][Full Text] [Related]
19. Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating. Mangindaan D; Yared I; Kurniawan H; Sheu JR; Wang MJ J Biomed Mater Res A; 2012 Nov; 100(11):3177-88. PubMed ID: 22941748 [TBL] [Abstract][Full Text] [Related]
20. Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water. Baskakova KI; Sedelnikova OV; Maksimovskiy EA; Asanov IP; Arymbaeva AT; Bulusheva LG; Okotrub AV Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]