These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35913346)

  • 1. Physics-based deep learning for modeling nonlinear pulse propagation in optical fibers.
    Sui H; Zhu H; Luo B; Taccheo S; Zou X; Yan L
    Opt Lett; 2022 Aug; 47(15):3912-3915. PubMed ID: 35913346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting nonlinear multi-pulse propagation in optical fibers via a lightweight convolutional neural network.
    Sui H; Zhu H; Jia H; Li Q; Ou M; Luo B; Zou X; Yan L
    Opt Lett; 2023 Sep; 48(18):4889-4892. PubMed ID: 37707929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-complexity full-field ultrafast nonlinear dynamics prediction by a convolutional feature separation modeling method.
    Yang H; Zhao H; Niu Z; Pu G; Xiao S; Hu W; Yi L
    Opt Express; 2022 Nov; 30(24):43691-43705. PubMed ID: 36523062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified failproof physics-informed neural network framework for fast and accurate optical fiber transmission link modeling.
    Uduagbomen J; Leeson MS; Liu Z; Lakshminarayana S; Xu T
    Appl Opt; 2024 May; 63(14):3794-3802. PubMed ID: 38856342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems.
    Muralidhar N; Bu J; Cao Z; He L; Ramakrishnan N; Tafti D; Karpatne A
    Big Data; 2020 Oct; 8(5):431-449. PubMed ID: 33090021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and analysis of recurrent neural networks for ultrafast optical pulse nonlinear propagation.
    Martins GR; Silva LCB; Segatto MEV; Rocha HRO; Castellani CES
    Opt Lett; 2022 Nov; 47(21):5489-5492. PubMed ID: 37219251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers.
    Mousavi SA; Mulvad HCH; Wheeler NV; Horak P; Hayes J; Chen Y; Bradley TD; Alam SU; Sandoghchi SR; Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2018 Apr; 26(7):8866-8882. PubMed ID: 29715848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-Supervised Deep Learning Model for Efficient Computation of Optical Properties of Suspended-Core Fibers.
    Wang G; Ren S; Li S; Chen S; Yu B
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data driven soliton solution of the nonlinear Schrödinger equation with certain P T-symmetric potentials via deep learning.
    Meiyazhagan J; Manikandan K; Sudharsan JB; Senthilvelan M
    Chaos; 2022 May; 32(5):053115. PubMed ID: 35649991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feed-forward neural network as nonlinear dynamics integrator for supercontinuum generation.
    Salmela L; Hary M; Mabed M; Foi A; Dudley JM; Genty G
    Opt Lett; 2022 Feb; 47(4):802-805. PubMed ID: 35167529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.
    Conforti M; Mas Arabi C; Mussot A; Kudlinski A
    Opt Lett; 2017 Oct; 42(19):4004-4007. PubMed ID: 28957183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sparse deep belief network with efficient fuzzy learning framework.
    Wang G; Jia QS; Qiao J; Bi J; Liu C
    Neural Netw; 2020 Jan; 121():430-440. PubMed ID: 31610414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OptiDistillNet: Learning nonlinear pulse propagation using the student-teacher model.
    Gautam N; Kaushik V; Choudhary A; Lall B
    Opt Express; 2022 Nov; 30(23):42430-42439. PubMed ID: 36366697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral interference measurement of nonlinear pulse propagation dynamics in optical fibers.
    Yang W; Fetterman MR; Davis JC; Warren WS
    Opt Lett; 2000 Jan; 25(1):22-4. PubMed ID: 18059769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Heating Dynamics of a Semiconductor Bridge Initiator with Deep Neural Network.
    Xu J; Tan J; Li H; Ye Y; Chen D
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.