These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35913397)

  • 1. Ordered Ag Nanoneedle Arrays with Enhanced Electrocatalytic CO
    Chen Q; Liu K; Zhou Y; Wang X; Wu K; Li H; Pensa E; Fu J; Miyauchi M; Cortés E; Liu M
    Nano Lett; 2022 Aug; 22(15):6276-6284. PubMed ID: 35913397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C
    Zhou Y; Liang Y; Fu J; Liu K; Chen Q; Wang X; Li H; Zhu L; Hu J; Pan H; Miyauchi M; Jiang L; Cortés E; Liu M
    Nano Lett; 2022 Mar; 22(5):1963-1970. PubMed ID: 35166553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electrochemical Reduction of CO
    Li M; Hu Y; Wang D; Geng D
    Chem Asian J; 2021 Sep; 16(18):2694-2701. PubMed ID: 34327834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver frameworks based on a tetraphenylethylene-imidazole ligand for electrocatalytic reduction of CO
    Wang YJ; Qiu ZF; Zhang Y; Wang FF; Zhao Y; Sun WY
    Dalton Trans; 2024 Feb; 53(8):3685-3689. PubMed ID: 38293865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Local Electric Field Induced by Dual Heteroatoms on Copper Boosts Efficient CO2 Reduction Over Ultrawide Potential Window.
    Xie F; Wang Z; Kao CW; Lan J; Lu YR; Tan Y
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407661. PubMed ID: 38924201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting Nitrogen Activation
    Liao W; Liu K; Wang J; Stefancu A; Chen Q; Wu K; Zhou Y; Li H; Mei L; Li M; Fu J; Miyauchi M; Cortés E; Liu M
    ACS Nano; 2023 Jan; 17(1):411-420. PubMed ID: 36524975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Reduction of CO
    Zhang S; Zhao S; Qu D; Liu X; Wu Y; Chen Y; Huang W
    Small; 2021 Sep; 17(37):e2102293. PubMed ID: 34342137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting CO
    Song Y; Wang Y; Shao J; Ye K; Wang Q; Wang G
    ACS Appl Mater Interfaces; 2022 May; 14(18):20368-20374. PubMed ID: 34636530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride Ion Adsorption Enables Ampere-Level CO
    Li S; Dong X; Zhao Y; Mao J; Chen W; Chen A; Song Y; Li G; Jiang Z; Wei W; Sun Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202210432. PubMed ID: 36056915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically Driven Formation of Sponge-Like Porous Silver Nanocubes Toward Efficient CO
    Fan T; Wu Q; Yang Z; Song Y; Zhang J; Huang P; Chen Z; Dong Y; Fang W; Yi X
    ChemSusChem; 2020 May; 13(10):2677-2683. PubMed ID: 32020717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag@Pd bimetallic structures for enhanced electrocatalytic CO
    Chen Z; Wang X; Wang L; Wu YA
    Nanoscale; 2022 Aug; 14(31):11187-11196. PubMed ID: 35904075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Curvature Transition-Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO
    Gao FY; Hu SJ; Zhang XL; Zheng YR; Wang HJ; Niu ZZ; Yang PP; Bao RC; Ma T; Dang Z; Guan Y; Zheng XS; Zheng X; Zhu JF; Gao MR; Yu SH
    Angew Chem Int Ed Engl; 2020 May; 59(22):8706-8712. PubMed ID: 31884699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Interfacial Microenvironment via Surface Hydroxylation to Realize the Global Optimization of Electrochemical CO
    Han X; Zhang T; Biset-Peiró M; Zhang X; Li J; Tang W; Tang P; Morante JR; Arbiol J
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32157-32165. PubMed ID: 35815662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple-Phase Interface Engineering over an In
    Wang S; Wu Z; Xu C; Jiang S; Peng HQ; Zhang W; Liu B; Song YF
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45423-45432. PubMed ID: 36190016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electrocatalytic CO
    Liu M; Pang Y; Zhang B; De Luna P; Voznyy O; Xu J; Zheng X; Dinh CT; Fan F; Cao C; de Arquer FP; Safaei TS; Mepham A; Klinkova A; Kumacheva E; Filleter T; Sinton D; Kelley SO; Sargent EH
    Nature; 2016 Sep; 537(7620):382-386. PubMed ID: 27487220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highthroughput Screening of CuBi Bimetallic Catalyst Array for Electrocatalytic CO2 Reduction Reaction by Scanning Electrochemical Microscope.
    Gu X; Wang Z; Li J; Ni G; Liu L; Zhan D; Peng J
    Chemphyschem; 2024 Jul; ():e202400536. PubMed ID: 38989542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacious CO
    Zhang W; Zhu N; Ding L; Hu Y; Wu Z
    Inorg Chem; 2021 Dec; 60(24):19356-19364. PubMed ID: 34839663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partially Oxidized Palladium Nanodots for Enhanced Electrocatalytic Carbon Dioxide Reduction.
    Lu H; Zhang L; Zhong JH; Yang HG
    Chem Asian J; 2018 Oct; 13(19):2800-2804. PubMed ID: 30055076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One Pot-Synthesized Ag/Ag-Doped CeO
    Sun Z; Wu X; Guan D; Chen X; Dai J; Gu Y; She S; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59993-60001. PubMed ID: 34890504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Engineering FeOOH/CoO Nanoneedle Array for Efficient Overall Water Splitting Driven by Solar Energy.
    Qiu C; He S; Wang Y; Wang Q; Zhao C
    Chemistry; 2020 Mar; 26(18):4120-4127. PubMed ID: 31688979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.