These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 35913731)
1. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. Kognole AA; Hazel A; MacKerell AD J Chem Theory Comput; 2022 Sep; 18(9):5672-5691. PubMed ID: 35913731 [TBL] [Abstract][Full Text] [Related]
2. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations. Raman EP; Yu W; Guvench O; Mackerell AD J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242 [TBL] [Abstract][Full Text] [Related]
4. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. Raman EP; Yu W; Lakkaraju SK; MacKerell AD J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913 [TBL] [Abstract][Full Text] [Related]
5. Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms. Zhao M; Yu W; MacKerell AD J Phys Chem B; 2024 Aug; 128(30):7362-7375. PubMed ID: 39031121 [TBL] [Abstract][Full Text] [Related]
6. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696 [TBL] [Abstract][Full Text] [Related]
7. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization. Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213 [TBL] [Abstract][Full Text] [Related]
8. Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations. Mousaei M; Kudaibergenova M; MacKerell AD; Noskov S J Chem Inf Model; 2020 Dec; 60(12):6489-6501. PubMed ID: 33196188 [TBL] [Abstract][Full Text] [Related]
9. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design. Faller CE; Raman EP; MacKerell AD; Guvench O Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034 [TBL] [Abstract][Full Text] [Related]
11. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation. Yu W; Weber DJ; MacKerell AD J Chem Theory Comput; 2023 May; 19(10):3007-3021. PubMed ID: 37115781 [TBL] [Abstract][Full Text] [Related]
12. Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design. Goel H; Hazel A; Yu W; Jo S; MacKerell AD New J Chem; 2022 Jan; 46(3):919-932. PubMed ID: 35210743 [TBL] [Abstract][Full Text] [Related]
13. Computational fragment-based binding site identification by ligand competitive saturation. Guvench O; MacKerell AD PLoS Comput Biol; 2009 Jul; 5(7):e1000435. PubMed ID: 19593374 [TBL] [Abstract][Full Text] [Related]
14. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches. Raman EP; Lakkaraju SK; Denny RA; MacKerell AD J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307 [TBL] [Abstract][Full Text] [Related]
15. Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots. Nordquist EB; Zhao M; Kumar A; MacKerell AD J Chem Inf Model; 2024 Oct; 64(19):7743-7757. PubMed ID: 39283165 [TBL] [Abstract][Full Text] [Related]
16. Rapid and accurate estimation of protein-ligand relative binding affinities using site-identification by ligand competitive saturation. Goel H; Hazel A; Ustach VD; Jo S; Yu W; MacKerell AD Chem Sci; 2021 Jul; 12(25):8844-8858. PubMed ID: 34257885 [TBL] [Abstract][Full Text] [Related]
17. Exploring protein-protein interactions using the site-identification by ligand competitive saturation methodology. Yu W; Jo S; Lakkaraju SK; Weber DJ; MacKerell AD Proteins; 2019 Apr; 87(4):289-301. PubMed ID: 30582220 [TBL] [Abstract][Full Text] [Related]
18. Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction. Orr AA; Tao A; Guvench O; MacKerell AD Mol Pharm; 2023 May; 20(5):2600-2611. PubMed ID: 37017675 [TBL] [Abstract][Full Text] [Related]
19. Computational Characterization of Antibody-Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach. Jo S; Xu A; Curtis JE; Somani S; MacKerell AD Mol Pharm; 2020 Nov; 17(11):4323-4333. PubMed ID: 32965126 [TBL] [Abstract][Full Text] [Related]
20. Identifying and Assessing Putative Allosteric Sites and Modulators for CXCR4 Predicted through Network Modeling and Site Identification by Ligand Competitive Saturation. Inan T; Flinko R; Lewis GK; MacKerell AD; Kurkcuoglu O J Phys Chem B; 2024 May; 128(21):5157-5174. PubMed ID: 38647430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]