These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35914056)

  • 1. Dynamic Target Tracking Control of Autonomous Underwater Vehicle Based on Trajectory Prediction.
    Cao X; Ren L; Sun C
    IEEE Trans Cybern; 2023 Mar; 53(3):1968-1981. PubMed ID: 35914056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Obstacle Detection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar.
    Cao X; Ren L; Sun C
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9198-9208. PubMed ID: 35294362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles.
    Zhang T; Liu S; He X; Huang H; Hao K
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Receptive Field Network (MRF-Net) for Autonomous Underwater Vehicle Fishing Net Detection Using Forward-Looking Sonar Images.
    Qin R; Zhao X; Zhu W; Yang Q; He B; Li G; Yan T
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33801861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Trajectory Tracking Model Predictive Control Novel Method of AUV Based on CFD Data.
    Bao H; Zhu H
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Avoid Collision Control of Autonomous Vehicle Based on Trajectory Re-Planning and V2V Information Interaction.
    Lin F; Wang K; Zhao Y; Wang S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positioning of Unmanned Underwater Vehicle Based on Autonomous Tracking Buoy.
    Li Y; Ruan R; Zhou Z; Sun A; Luo X
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning.
    Wang Y; Tang C; Wang S; Cheng L; Wang R; Tan M; Hou Z
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3741-3752. PubMed ID: 33560993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Adaptive and Switching Control for Contact Maintenance of a Robotic Vehicle-Manipulator System for Underwater Asset Inspection.
    Cetin K; Zapico CS; Tugal H; Petillot Y; Dunnigan M; Erden MS
    Front Robot AI; 2021; 8():706558. PubMed ID: 34395538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles.
    Zhu C; Huang B; Zhou B; Su Y; Zhang E
    ISA Trans; 2021 Aug; 114():57-71. PubMed ID: 33446340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal tracking control of an Autonomous Underwater Vehicle: A PMP approach.
    B A; Gajbhiye S
    ISA Trans; 2024 Feb; 145():298-314. PubMed ID: 38057173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven trajectory tracking control for autonomous underwater vehicle based on iterative extended state observer.
    Wu C; Dai Y; Shan L; Zhu Z; Wu Z
    Math Biosci Eng; 2022 Jan; 19(3):3036-3055. PubMed ID: 35240819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underwater Docking Approach and Homing to Enable Persistent Operation.
    Page BR; Lambert R; Chavez-Galaviz J; Mahmoudian N
    Front Robot AI; 2021; 8():621755. PubMed ID: 33791340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs).
    Yao F; Yang C; Liu X; Zhang M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network for 3D trajectory tracking control of a CMG-actuated underwater vehicle with input saturation.
    Xu R; Tang G; Xie D; Han L; Huang H
    ISA Trans; 2022 Apr; 123():152-167. PubMed ID: 34176606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.
    Wu X; Jiang D; Yun J; Liu X; Sun Y; Tao B; Tong X; Xu M; Kong J; Liu Y; Zhao G; Fang Z
    Front Bioeng Biotechnol; 2022; 10():843020. PubMed ID: 35295652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking Design of an Uncertain Autonomous Underwater Vehicle with Input Saturations by Adaptive Regression Matrix-Based Fixed-Time Control.
    Wu HM
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time Trajectory Planning and Tracking Control of Bionic Underwater Robot in Dynamic Environment.
    Ding F; Wang R; Zhang T; Zheng G; Wu Z; Wang S
    Cyborg Bionic Syst; 2024; 5():0112. PubMed ID: 38725972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side-scan sonar imaging data of underwater vehicles for mine detection.
    Pessanha Santos N; Moura R; Sampaio Torgal G; Lobo V; Neto MC
    Data Brief; 2024 Apr; 53():110132. PubMed ID: 38384311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater Localization and Mapping Based on Multi-Beam Forward Looking Sonar.
    Cheng C; Wang C; Yang D; Liu W; Zhang F
    Front Neurorobot; 2021; 15():801956. PubMed ID: 35095458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.