These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35914135)

  • 1. Machine learning-based inverse design for electrochemically controlled microscopic gradients of O
    Chen Y; Wang J; Hoar BB; Lu S; Liu C
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2206321119. PubMed ID: 35914135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A distinct reactive oxygen species profile confers chemoresistance in glioma-propagating cells and associates with patient survival outcome.
    Koh LW; Koh GR; Ng FS; Toh TB; Sandanaraj E; Chong YK; Phong M; Tucker-Kellogg G; Kon OL; Ng WH; Ng IH; Clement MV; Pervaiz S; Ang BT; Tang CS
    Antioxid Redox Signal; 2013 Dec; 19(18):2261-79. PubMed ID: 23477542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An update on methods and approaches for interrogating mitochondrial reactive oxygen species production.
    Mailloux RJ
    Redox Biol; 2021 Sep; 45():102044. PubMed ID: 34157640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical detection of H2O2 formation in isolated mitochondria.
    Rapino S; Marcu R; Paolucci F; Giorgio M
    Methods Enzymol; 2013; 526():123-34. PubMed ID: 23791097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Upconversion Mesoporous Tin Oxide Bio-Photocatalyst for H
    Feng L; Zhao R; Liu B; He F; Gai S; Chen Y; Yang P
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41047-41061. PubMed ID: 32816454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between xanthine oxidases from buttermilk and microorganisms regarding their ability to generate reactive oxygen species.
    Wippich N; Peschke D; Peschke E; Holtz J; Bromme HJ
    Int J Mol Med; 2001 Feb; 7(2):211-6. PubMed ID: 11172627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.
    Mailloux RJ; Craig Ayre D; Christian SL
    Redox Biol; 2016 Aug; 8():285-97. PubMed ID: 26928132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling.
    Kuksal N; Chalker J; Mailloux RJ
    Biol Chem; 2017 Oct; 398(11):1209-1227. PubMed ID: 28675747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Reactive Oxygen Species in Cells Undergoing Oncogene-Induced Senescence.
    Ameziane-El-Hassani R; Dupuy C
    Methods Mol Biol; 2017; 1534():139-145. PubMed ID: 27812875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide.
    Thomas EL; Pera KA
    J Bacteriol; 1983 Jun; 154(3):1236-44. PubMed ID: 6304008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application.
    Koren K; Jensen PØ; Kühl M
    Analyst; 2016 Jul; 141(14):4332-9. PubMed ID: 27183881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats.
    Tabet F; Savoia C; Schiffrin EL; Touyz RM
    J Cardiovasc Pharmacol; 2004 Aug; 44(2):200-8. PubMed ID: 15243301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Quantification of Extracellular Local H
    Bozem M; Knapp P; Mirčeski V; Slowik EJ; Bogeski I; Kappl R; Heinemann C; Hoth M
    Antioxid Redox Signal; 2018 Aug; 29(6):501-517. PubMed ID: 28314376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release.
    Ueyama T; Sakuma M; Ninoyu Y; Hamada T; Dupuy C; Geiszt M; Leto TL; Saito N
    J Biol Chem; 2015 Mar; 290(10):6495-506. PubMed ID: 25586178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria.
    Slade L; Chalker J; Kuksal N; Young A; Gardiner D; Mailloux RJ
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1960-1969. PubMed ID: 28506882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromogenic, Fluorescent, and Redox Sensors for Multichannel Imaging and Detection of Hydrogen Peroxide in Living Cell Systems.
    Ni Y; Liu H; Dai D; Mu X; Xu J; Shao S
    Anal Chem; 2018 Sep; 90(17):10152-10158. PubMed ID: 30058328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields.
    Usselman RJ; Hill I; Singel DJ; Martino CF
    PLoS One; 2014; 9(3):e93065. PubMed ID: 24681944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species.
    Dewhirst RA; Fry SC
    Biochem J; 2018 Nov; 475(21):3451-3470. PubMed ID: 30348642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide formation during iron deposition in horse spleen ferritin using O2 as an oxidant.
    Lindsay S; Brosnahan D; Watt GD
    Biochemistry; 2001 Mar; 40(11):3340-7. PubMed ID: 11258954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of low oxygen condition on the generation of reactive oxygen species and the development in mouse embryos cultured in vitro.
    Kwon HC; Yang HW; Hwang KJ; Yoo JH; Kim MS; Lee CH; Ryu HS; Oh KS
    J Obstet Gynaecol Res; 1999 Oct; 25(5):359-66. PubMed ID: 10533333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.