BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35914146)

  • 1. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM.
    Park JU; Tsai AW; Chen TH; Peters JE; Kellogg EH
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2202590119. PubMed ID: 35914146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of the holo CRISPR RNA-guided transposon integration complex.
    Park JU; Tsai AW; Rizo AN; Truong VH; Wellner TX; Schargel RD; Kellogg EH
    Nature; 2023 Jan; 613(7945):775-782. PubMed ID: 36442503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into transposon cleavage and integration by TnsB of ShCAST system.
    Zeng T; Yin J; Liu Z; Li Z; Zhang Y; Lv Y; Lu ML; Luo M; Chen M; Xiao Y
    Cell Rep; 2023 Jul; 42(7):112698. PubMed ID: 37379212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the assembly of the type V CRISPR-associated transposon complex.
    Schmitz M; Querques I; Oberli S; Chanez C; Jinek M
    Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon.
    Tenjo-Castaño F; Sofos N; López-Méndez B; Stutzke LS; Fuglsang A; Stella S; Montoya G
    Nat Commun; 2022 Oct; 13(1):5792. PubMed ID: 36184667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition.
    Skelding Z; Queen-Baker J; Craig NL
    EMBO J; 2003 Nov; 22(21):5904-17. PubMed ID: 14592987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD.
    Choi KY; Spencer JM; Craig NL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):E2858-65. PubMed ID: 24982178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly.
    Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G
    Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for target site selection in RNA-guided DNA transposition systems.
    Park JU; Tsai AW; Mehrotra E; Petassi MT; Hsieh SC; Ke A; Peters JE; Kellogg EH
    Science; 2021 Aug; 373(6556):768-774. PubMed ID: 34385391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of transposon end recognition explains central features of Tn7 transposition systems.
    Kaczmarska Z; Czarnocki-Cieciura M; Górecka-Minakowska KM; Wingo RJ; Jackiewicz J; Zajko W; Poznański JT; Rawski M; Grant T; Peters JE; Nowotny M
    Mol Cell; 2022 Jul; 82(14):2618-2632.e7. PubMed ID: 35654042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel molecular requirements for CRISPR RNA-guided transposition.
    Walker MWG; Klompe SE; Zhang DJ; Sternberg SH
    Nucleic Acids Res; 2023 May; 51(9):4519-4535. PubMed ID: 37078593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of target site selection by type V-K CRISPR-associated transposases.
    George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH
    Science; 2023 Nov; 382(6672):eadj8543. PubMed ID: 37972161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation.
    Skelding Z; Sarnovsky R; Craig NL
    EMBO J; 2002 Jul; 21(13):3494-504. PubMed ID: 12093750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual modes of CRISPR-associated transposon homing.
    Saito M; Ladha A; Strecker J; Faure G; Neumann E; Altae-Tran H; Macrae RK; Zhang F
    Cell; 2021 Apr; 184(9):2441-2453.e18. PubMed ID: 33770501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase.
    Choi KY; Li Y; Sarnovsky R; Craig NL
    Proc Natl Acad Sci U S A; 2013 May; 110(22):E2038-45. PubMed ID: 23674682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition.
    Hoffmann FT; Kim M; Beh LY; Wang J; Vo PLH; Gelsinger DR; George JT; Acree C; Mohabir JT; Fernández IS; Sternberg SH
    Nature; 2022 Sep; 609(7926):384-393. PubMed ID: 36002573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of target site selection by type V-K CRISPR-associated transposases.
    George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector.
    Wang S; Gabel C; Siddique R; Klose T; Chang L
    Cell; 2023 Sep; 186(19):4204-4215.e19. PubMed ID: 37557170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of the Tn7 targeting complex by a regulated stepwise process.
    Shen Y; Krishnan SS; Petassi MT; Hancock MA; Peters JE; Guarné A
    Mol Cell; 2024 Jun; 84(12):2368-2381.e6. PubMed ID: 38834067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.