These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35914237)

  • 1. Unraveling the Capacitive Charge Storage Mechanism of Nitrogen-Doped Porous Carbons by EQCM and ssNMR.
    Zhang E; Wu YC; Shao H; Klimavicius V; Zhang H; Taberna PL; Grothe J; Buntkowsky G; Xu F; Simon P; Kaskel S
    J Am Chem Soc; 2022 Aug; 144(31):14217-14225. PubMed ID: 35914237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of electrolyte molecules with carbon materials of well-defined porosity: characterization by solid-state NMR spectroscopy.
    Borchardt L; Oschatz M; Paasch S; Kaskel S; Brunner E
    Phys Chem Chem Phys; 2013 Sep; 15(36):15177-84. PubMed ID: 23925570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electric double-layer capacitance by desolvation of lithium ions in confined nanospaces of microporous carbon.
    Urita K; Ide N; Isobe K; Furukawa H; Moriguchi I
    ACS Nano; 2014 Apr; 8(4):3614-9. PubMed ID: 24646017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous carbon for electrochemical capacitive energy storage.
    Shao H; Wu YC; Lin Z; Taberna PL; Simon P
    Chem Soc Rev; 2020 May; 49(10):3005-3039. PubMed ID: 32285082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of unique skin-tissue-bone structured porous carbons for enhanced supercapacitor performance.
    Yan D; Guo DC; Lu AH; Dong XL; Li WC
    J Colloid Interface Sci; 2019 Dec; 557():519-527. PubMed ID: 31546117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon materials for chemical capacitive energy storage.
    Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S
    Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage.
    Su H; Huang H; Zhao S; Zhou Y; Xu S; Pan H; Gu B; Chu X; Deng W; Zhang H; Zhang H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2773-2782. PubMed ID: 31867944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer.
    Chen XY; Xie DH; Chen C; Liu JW
    J Colloid Interface Sci; 2013 Mar; 393():241-8. PubMed ID: 23137906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism.
    Jian W; Zhang W; Wu B; Wei X; Liang W; Zhang X; Wen F; Zhao L; Yin J; Lu K; Qiu X
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5425-5438. PubMed ID: 35050588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphitic nitrogen in carbon catalysts is important for the reduction of nitrite as revealed by naturally abundant
    Chen Z; Jaworski A; Chen J; Budnyak TM; Szewczyk I; Rokicińska A; Dronskowski R; Hedin N; Kuśtrowski P; Slabon A
    Dalton Trans; 2021 May; 50(20):6857-6866. PubMed ID: 33912887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.
    Shpigel N; Levi MD; Sigalov S; Daikhin L; Aurbach D
    Acc Chem Res; 2018 Jan; 51(1):69-79. PubMed ID: 29297669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass waste-derived nitrogen-rich hierarchical porous carbon offering superior capacitive behavior in an environmentally friendly aqueous MgSO
    Zou K; Tan H; Wang L; Qian Y; Deng Y; Chen G
    J Colloid Interface Sci; 2019 Mar; 537():475-485. PubMed ID: 30469116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Doped Mesoporous Carbon Prepared from a Polybenzoxazine Precursor for High Performance Supercapacitors.
    Thirukumaran P; Atchudan R; Shakila Parveen A; Santhamoorthy M; Ramkumar V; Kim SC
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34206681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of nitrogen configurations and content in 3D porous carbons for improved lithium storage.
    Chao H; Zhu Y; Luo X; Zhang C; Liu J; Wang W; Qu M
    Dalton Trans; 2021 Oct; 50(40):14390-14399. PubMed ID: 34569558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.