BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 35914269)

  • 1. LINC02418 upregulates EPHA2 by competitively sponging miR-372-3p to promote 5-Fu/DDP chemoresistance in colorectal cancer.
    Yao F; Huang X; Xie Z; Chen J; Zhang L; Wang Q; Long H; Jiang J; Wu Q
    Carcinogenesis; 2022 Oct; 43(9):895-907. PubMed ID: 35914269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LncRNA LINC01871 sponging miR-142-3p to modulate ZYG11B promotes the chemoresistance of colorectal cancer cells by inducing autophagy.
    Duan B; Zhang H; Zhu Z; Yan X; Ji Z; Li J
    Anticancer Drugs; 2023 Aug; 34(7):827-836. PubMed ID: 36847071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance.
    Khalafizadeh A; Hashemizadegan SD; Shokri F; Bakhshinejad B; Jabbari K; Motavaf M; Babashah S
    J Cell Mol Med; 2024 Apr; 28(7):e18197. PubMed ID: 38506091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer.
    Wang L; Cho KB; Li Y; Tao G; Xie Z; Guo B
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer.
    Yang Y; Yuan H; Zhao L; Guo S; Hu S; Tian M; Nie Y; Yu J; Zhou C; Niu J; Wang G; Song Y
    Cell Death Differ; 2022 Nov; 29(11):2177-2189. PubMed ID: 35484333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer.
    Primeaux M; Liu X; Gowrikumar S; Fatima I; Fisher KW; Bastola D; Vecchio AJ; Singh AB; Dhawan P
    Cancer Lett; 2023 Nov; 579():216479. PubMed ID: 37924938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer.
    Lee YJ; Kim WR; Park EG; Lee DH; Kim JM; Shin HJ; Jeong HS; Roh HY; Kim HS
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LIMK1 m
    Chen L; Sun K; Qin W; Huang B; Wu C; Chen J; Lai Q; Wang X; Zhou R; Li A; Liu S; Zhang Y
    Cancer Lett; 2023 Nov; 576():216420. PubMed ID: 37778684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long non-coding RNA MALAT1 protects against Aβ
    Chanda K; Jana NR; Mukhopadhyay D
    Life Sci; 2022 Aug; 302():120652. PubMed ID: 35598655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs are important regulators of drug resistance in colorectal cancer.
    Zhang Y; Wang J
    Biol Chem; 2017 Jul; 398(8):929-938. PubMed ID: 28095367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protosappanin B enhances the chemosensitivity of 5-fluorouracil in colon adenocarcinoma by regulating the LINC00612/microRNA-590-3p/Golgi phosphoprotein 3 axis.
    Hong Z; Li Y; Chen M; Chen X; Deng X; Wu Y; Wang C; Qiu C
    Discov Oncol; 2024 May; 15(1):193. PubMed ID: 38806777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Fluorouracil resistant CRC cells derived exosomes promote cancer-associated fibroblasts secreting more CXCL12.
    Zhang T; He Z; Qi X; Zhang Y; Liu Y; Jin L; Wang T
    J Cancer; 2024; 15(11):3441-3451. PubMed ID: 38817851
    [No Abstract]   [Full Text] [Related]  

  • 13. Targeting EPHA2 with Kinase Inhibitors in Colorectal Cancer.
    Tröster A; Jores N; Mineev KS; Sreeramulu S; DiPrima M; Tosato G; Schwalbe H
    ChemMedChem; 2023 Dec; 18(23):e202300420. PubMed ID: 37736700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rebound increase in microRNA levels at the end of 5-FU-based therapy in colorectal cancer patients.
    Badr D; Fouad MA; Hussein M; Salem S; Zekri A; Shouman S
    Sci Rep; 2023 Aug; 13(1):14237. PubMed ID: 37648713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Long Non-Coding RNAs in the Chemoresistance of Gastric Cancer: A Systematic Review.
    Li Z; Lü M; Zhou Y; Xu L; Jiang Y; Liu Y; Li X; Song M
    Onco Targets Ther; 2021; 14():503-518. PubMed ID: 33500626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel lncRNA FUAT1/TNS4 Axis Confers Chemoresistance by Suppressing Reactive Oxygen Species-Mediated Apoptosis in Gastric Cancer.
    Liu M; Li H; Li X; Pan B; Zhang J; Pan Y; Shen M; Liu L
    Antioxid Redox Signal; 2023 Nov; ():. PubMed ID: 37658838
    [No Abstract]   [Full Text] [Related]  

  • 17. N6-methyladenosine of
    Zheng JQ; Zhan Y; Huang WJ; Chen ZY; Wu WH
    Biochem Biophys Rep; 2023 Dec; 36():101572. PubMed ID: 38024865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoresistance pathways in DLBCL.
    Deaglio S
    Blood; 2023 Sep; 142(11):943-944. PubMed ID: 37707876
    [No Abstract]   [Full Text] [Related]  

  • 19. Expression and Significance of LINC02418 in Breast Cancer.
    Zhou YH; Huang JY
    Breast Cancer (Dove Med Press); 2024; 16():233-243. PubMed ID: 38694704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LncRNA expression and regulatory networks across pediatric cancers.
    Illarregi U; Lopez-Lopez E
    Transl Pediatr; 2024 Feb; 13(2):383-386. PubMed ID: 38455753
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.