BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35914378)

  • 1. Influence of optical transmissivity on signal characteristics of photoacoustic guided waves in long cortical bone.
    Chen H; Xu K; Liu X; Li Y; Liu Z; Ta D
    Ultrasonics; 2022 Dec; 126():106816. PubMed ID: 35914378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Ultrasonic Guided Wave Propagation in Multilayered Bone Structure With Varying Soft-Tissue Thickness in View of Cortical Bone Characterization.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):147-155. PubMed ID: 34520355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-frequency axial transmission bone ultrasonometer.
    Tatarinov A; Egorov V; Sarvazyan N; Sarvazyan A
    Ultrasonics; 2014 Jul; 54(5):1162-9. PubMed ID: 24206675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Versus Multi-channel Dispersion Analysis of Ultrasonic Guided Waves Propagating in Long Bones.
    Tran TNHT; He F; Zhang Z; Sacchi MD; Ta D; Le LH
    Ultrason Imaging; 2021 May; 43(3):157-163. PubMed ID: 33840327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic Guided Waves in Bone: A Decade of Advancement in Review.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2875-2895. PubMed ID: 35930519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method.
    Pereira D; Haiat G; Fernandes J; Belanger P
    J Acoust Soc Am; 2017 Apr; 141(4):2538. PubMed ID: 28464675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-Learning Analysis of Ultrasonic Guided Waves for Coated Cortical Bone Characterization.
    Gu M; Li Y; Shi Q; Tran TNHT; Song X; Li D; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):2010-2027. PubMed ID: 35271439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex vivo cortical porosity and thickness predictions at the tibia using full-spectrum ultrasonic guided-wave analysis.
    Schneider J; Iori G; Ramiandrisoa D; Hammami M; Gräsel M; Chappard C; Barkmann R; Laugier P; Grimal Q; Minonzio JG; Raum K
    Arch Osteoporos; 2019 Feb; 14(1):21. PubMed ID: 30783777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrogram decomposition of ultrasonic guided waves for cortical thickness assessment using basis learning.
    Gu M; Li Y; Tran TNHT; Song X; Shi Q; Xu K; Ta D
    Ultrasonics; 2022 Mar; 120():106665. PubMed ID: 34968990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex Vivo Assessment of Cortical Bone Properties Using Low-Frequency Ultrasonic Guided Waves.
    Pereira D; Fernandes J; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):910-922. PubMed ID: 31825866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone Characterization.
    Li Y; Xu K; Li Y; Xu F; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):935-951. PubMed ID: 32956055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation on osteoporosis based on guided wave propagation in multi-layered bone plates.
    Lee MY; Jeyaprakash N; Yang CH
    J Mech Behav Biomed Mater; 2022 Feb; 126():105026. PubMed ID: 34915357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of guided mode propagation in fractured long bones.
    Xu K; Liu D; Ta D; Hu B; Wang W
    Ultrasonics; 2014 Jul; 54(5):1210-8. PubMed ID: 24139020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative study of optical and mechanical bone status using multispectral photoacoustics.
    Steinberg I; Turko N; Levi O; Gannot I; Eyal A
    J Biophotonics; 2016 Sep; 9(9):924-33. PubMed ID: 26487250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.
    Li Y; Liu D; Xu K; Ta D; Le LH; Wang W
    Biomed Res Int; 2017; 2017():3083141. PubMed ID: 28182135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling.
    Guha A; Aynardi M; Shokouhi P; Lissenden CJ
    Ultrasonics; 2021 Jul; 114():106407. PubMed ID: 33667952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.