These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 35914597)
1. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions. Zhao X; Yuan Z; Wang S; Pan Y; Chen N; Tunc A; Cheung K; Alparov A; Chen W; Deevsalar R; Lin J; Jia Y Sci Total Environ; 2022 Nov; 848():157719. PubMed ID: 35914597 [TBL] [Abstract][Full Text] [Related]
2. The fate of co-existent cadmium and arsenic during Fe(II)-induced transformation of As(V)/Cd(II)-bearing ferrihydrite. Zhao X; Yuan Z; Wang S; Zhang G; Qu S; Wang Y; Liu S; Pan Y; Lin J; Jia Y Chemosphere; 2022 Aug; 301():134665. PubMed ID: 35452640 [TBL] [Abstract][Full Text] [Related]
3. Photoinduced transformation of ferrihydrite in the presence of aqueous sulfite and its influence on the repartitioning of Cd. Qiu J; Hou X; Ren Y; Liu C; Meng F; Lee JF; Lin YJ; Huang Z; Ma H; Shi Z; Feng C Water Res; 2023 Mar; 231():119607. PubMed ID: 36680820 [TBL] [Abstract][Full Text] [Related]
4. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Xiao W; Jones AM; Collins RN; Waite TD Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1760-1769. PubMed ID: 29751097 [TBL] [Abstract][Full Text] [Related]
5. Fe(II)-catalyzed phase transformation of Cd(II)-bearing ferrihydrite-kaolinite associations under anoxic conditions: New insights to role of kaolinite and fate of Cd(II). Wu C; Wang S; Peng W; Yin H; Zhou W; Liao W; Cui HJ J Hazard Mater; 2024 Apr; 468():133798. PubMed ID: 38368687 [TBL] [Abstract][Full Text] [Related]
6. Pyrogenic Carbon Improves Cd Retention during Microbial Transformation of Ferrihydrite under Varying Redox Conditions. Yu W; Chu C; Chen B Environ Sci Technol; 2023 May; 57(20):7875-7885. PubMed ID: 37171251 [TBL] [Abstract][Full Text] [Related]
7. Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. Bu H; Lei Q; Tong H; Liu C; Hu S; Xu W; Wang Y; Chen M; Qiao J Sci Total Environ; 2023 Feb; 861():160624. PubMed ID: 36460100 [TBL] [Abstract][Full Text] [Related]
8. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. Hockmann K; Karimian N; Schlagenhauff S; Planer-Friedrich B; Burton ED Environ Sci Technol; 2021 Apr; 55(8):4954-4963. PubMed ID: 33710876 [TBL] [Abstract][Full Text] [Related]
9. Effect of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction. Zhou Z; Muehe EM; Tomaszewski EJ; Lezama-Pacheco J; Kappler A; Byrne JM Environ Sci Technol; 2020 Aug; 54(15):9445-9453. PubMed ID: 32633952 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution. Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661 [TBL] [Abstract][Full Text] [Related]
11. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation. Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142 [TBL] [Abstract][Full Text] [Related]
12. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Boland DD; Collins RN; Miller CJ; Glover CJ; Waite TD Environ Sci Technol; 2014 May; 48(10):5477-85. PubMed ID: 24724707 [TBL] [Abstract][Full Text] [Related]
13. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals. Zhao Y; Moore OW; Xiao KQ; Otero-Fariña A; Banwart SA; Wu FC; Peacock CL Environ Sci Technol; 2023 Nov; 57(45):17501-17510. PubMed ID: 37921659 [TBL] [Abstract][Full Text] [Related]
14. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468 [TBL] [Abstract][Full Text] [Related]
15. Contact with soil impacts ferrihydrite and lepidocrocite transformations during redox cycling in a paddy soil. Schulz K; Notini L; Grigg ARC; Kubeneck LJ; Wisawapipat W; ThomasArrigo LK; Kretzschmar R Environ Sci Process Impacts; 2023 Dec; 25(12):1945-1961. PubMed ID: 37971060 [TBL] [Abstract][Full Text] [Related]
16. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics. Chen C; Kukkadapu R; Sparks DL Environ Sci Technol; 2015 Sep; 49(18):10927-36. PubMed ID: 26260047 [TBL] [Abstract][Full Text] [Related]
17. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments. Cooper DC; Picardal FF; Coby AJ Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II). Shen X; Zhu H; Wang P; Zheng L; Hu S; Liu C J Hazard Mater; 2022 Aug; 436():129216. PubMed ID: 35739738 [TBL] [Abstract][Full Text] [Related]
19. Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite. Notini L; ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2022 Sep; 56(17):12723-12733. PubMed ID: 35998342 [TBL] [Abstract][Full Text] [Related]
20. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]