These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35915110)

  • 1. The latent dedifferentiation capacity of newt limb muscles is unleashed by a combination of metamorphosis and body growth.
    Yu ZY; Shiga S; Casco-Robles MM; Takeshima K; Maruo F; Chiba C
    Sci Rep; 2022 Aug; 12(1):11653. PubMed ID: 35915110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.
    Tanaka HV; Ng NCY; Yang Yu Z; Casco-Robles MM; Maruo F; Tsonis PA; Chiba C
    Nat Commun; 2016 Mar; 7():11069. PubMed ID: 27026263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Differences in the mechanism of muscle regeneration between the larval and metamorphosed newts.].
    Chiba C
    Clin Calcium; 2017; 27(3):345-350. PubMed ID: 28232648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of newt rad (ras associated with diabetes), a gene specifically expressed in regenerating limb muscle.
    Shimizu-Nishikawa K; Tsuji S; Yoshizato K
    Dev Dyn; 2001 Jan; 220(1):74-86. PubMed ID: 11146509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.
    Sandoval-Guzmán T; Wang H; Khattak S; Schuez M; Roensch K; Nacu E; Tazaki A; Joven A; Tanaka EM; Simon A
    Cell Stem Cell; 2014 Feb; 14(2):174-87. PubMed ID: 24268695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metamorphosis inhibition: an alternative rearing protocol for the newt, Cynops pyrrhogaster.
    Chiba C; Yamada S; Tanaka H; Inae-Chiba M; Miura T; Casco-Robles MM; Yoshikawa T; Inami W; Mizuno A; Islam MR; Han W; Yasumuro H; Matsumoto M; Takayanagi M
    Zoolog Sci; 2012 May; 29(5):293-8. PubMed ID: 22559962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae.
    Rodrigues AM; Christen B; Martí M; Izpisúa Belmonte JC
    BMC Dev Biol; 2012 Feb; 12():9. PubMed ID: 22369050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative two-dimensional gel protein database of the intact and regenerating newt limbs.
    Tsonis PA
    Electrophoresis; 1993; 14(1-2):148-56. PubMed ID: 8462507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Senescent cells enhance newt limb regeneration by promoting muscle dedifferentiation.
    Walters HE; Troyanovskiy KE; Graf AM; Yun MH
    Aging Cell; 2023 Jun; 22(6):e13826. PubMed ID: 37025070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-programming of newt cardiomyocytes is induced by tissue regeneration.
    Laube F; Heister M; Scholz C; Borchardt T; Braun T
    J Cell Sci; 2006 Nov; 119(Pt 22):4719-29. PubMed ID: 17077121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.
    Wagner I; Wang H; Weissert PM; Straube WL; Shevchenko A; Gentzel M; Brito G; Tazaki A; Oliveira C; Sugiura T; Shevchenko A; Simon A; Drechsel DN; Tanaka EM
    Dev Cell; 2017 Mar; 40(6):608-617.e6. PubMed ID: 28350991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian myotube dedifferentiation induced by newt regeneration extract.
    McGann CJ; Odelberg SJ; Keating MT
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13699-704. PubMed ID: 11717431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of helix-loop-helix type negative regulators of differentiation during limb regeneration in urodeles and anurans.
    Shimizu-Nishikawa K; Tazawa I; Uchiyama K; Yoshizato K
    Dev Growth Differ; 1999 Dec; 41(6):731-43. PubMed ID: 10646803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of muscles in regenerating limbs of the newt after denervation of the blastema.
    Grim M; Carlson BM
    J Embryol Exp Morphol; 1979 Dec; 54():99-111. PubMed ID: 528874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of muscle differentiation during urodele limb regeneration.
    Lo DC; Allen F; Brockes JP
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7230-4. PubMed ID: 8346239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid accumulation of nucleostemin in nucleolus during newt regeneration.
    Maki N; Takechi K; Sano S; Tarui H; Sasai Y; Agata K
    Dev Dyn; 2007 Apr; 236(4):941-50. PubMed ID: 17133523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Evaluation of amputation techniques for the study of limb regeneration in the newt and toad].
    Fujimaki M; Maeda Y; Fujisawa N; Kato A; Niimura S; Sato NL
    Jikken Dobutsu; 1984 Jan; 33(1):109-14. PubMed ID: 6468505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration.
    Singh BN; Doyle MJ; Weaver CV; Koyano-Nakagawa N; Garry DJ
    Dev Biol; 2012 Nov; 371(1):23-34. PubMed ID: 22902898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormone action in newt limb regeneration: insulin and endorphins.
    Vethamany-Globus S
    Biochem Cell Biol; 1987 Aug; 65(8):730-8. PubMed ID: 2963650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel erythrocyte clumps revealed by an orphan gene Newtic1 in circulating blood and regenerating limbs of the adult newt.
    Casco-Robles RM; Watanabe A; Eto K; Takeshima K; Obata S; Kinoshita T; Ariizumi T; Nakatani K; Nakada T; Tsonis PA; Casco-Robles MM; Sakurai K; Yahata K; Maruo F; Toyama F; Chiba C
    Sci Rep; 2018 May; 8(1):7455. PubMed ID: 29748592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.