These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35915209)
1. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties. Costine B; Zhang M; Chhajed S; Pearson B; Chen S; Nadakuduti SS Sci Rep; 2022 Aug; 12(1):13201. PubMed ID: 35915209 [TBL] [Abstract][Full Text] [Related]
2. Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4'-Deoxyflavones in Scutellaria baicalensis. Zhao Q; Cui MY; Levsh O; Yang D; Liu J; Li J; Hill L; Yang L; Hu Y; Weng JK; Chen XY; Martin C Mol Plant; 2018 Jan; 11(1):135-148. PubMed ID: 28842248 [TBL] [Abstract][Full Text] [Related]
4. The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. Fang S; Qiu S; Chen K; Lv Z; Chen W Plant Physiol Biochem; 2023 Jul; 200():107794. PubMed ID: 37257409 [TBL] [Abstract][Full Text] [Related]
5. Metabolite profiling reveals organ-specific flavone accumulation in Askey BC; Liu D; Rubin GM; Kunik AR; Song YH; Ding Y; Kim J Plant Direct; 2021 Dec; 5(12):e372. PubMed ID: 34977451 [No Abstract] [Full Text] [Related]
6. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4'-deoxyflavones in Scutellaria baicalensis Georgi. Cui MY; Lu AR; Li JX; Liu J; Fang YM; Pei TL; Zhong X; Wei YK; Kong Y; Qiu WQ; Hu YH; Yang J; Chen XY; Martin C; Zhao Q Plant Biotechnol J; 2022 Jan; 20(1):129-142. PubMed ID: 34490975 [TBL] [Abstract][Full Text] [Related]
7. [Study advance in biosynthesis of flavone from Scutellaria]. Yu-Min F; Meng-Ying C; Jie L; Tian-Lin P; Yu-Kun W; Qing Z Zhongguo Zhong Yao Za Zhi; 2020 Oct; 45(20):4819-4826. PubMed ID: 33350252 [TBL] [Abstract][Full Text] [Related]
8. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Zhao Q; Zhang Y; Wang G; Hill L; Weng JK; Chen XY; Xue H; Martin C Sci Adv; 2016 Apr; 2(4):e1501780. PubMed ID: 27152350 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots. Kim YS; Kim YB; Kim Y; Lee MY; Park SU Nat Prod Commun; 2014 Jun; 9(6):803-7. PubMed ID: 25115083 [TBL] [Abstract][Full Text] [Related]
10. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Zhao Q; Yang J; Cui MY; Liu J; Fang Y; Yan M; Qiu W; Shang H; Xu Z; Yidiresi R; Weng JK; Pluskal T; Vigouroux M; Steuernagel B; Wei Y; Yang L; Hu Y; Chen XY; Martin C Mol Plant; 2019 Jul; 12(7):935-950. PubMed ID: 30999079 [TBL] [Abstract][Full Text] [Related]
11. Unraveling spatial metabolome of the aerial and underground parts of Scutellaria baicalensis by matrix-assisted laser desorption/ionization mass spectrometry imaging. Zhou P; Zuo L; Liu C; Xiong B; Li Z; Zhou X; Yue H; Jia Q; Zheng T; Zou J; Du S; Chen D; Sun Z Phytomedicine; 2024 Jan; 123():155259. PubMed ID: 38096718 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora. Kim JK; Kim YS; Kim Y; Uddin MR; Kim YB; Kim HH; Park SY; Lee MY; Chung SO; Park SU World J Microbiol Biotechnol; 2014 Mar; 30(3):887-92. PubMed ID: 24162949 [TBL] [Abstract][Full Text] [Related]
13. Characterization of UDP-glycosyltransferase family members reveals how major flavonoid glycoside accumulates in the roots of Scutellaria baicalensis. Pei T; Yan M; Li T; Li X; Yin Y; Cui M; Fang Y; Liu J; Kong Y; Xu P; Zhao Q BMC Genomics; 2022 Mar; 23(1):169. PubMed ID: 35232374 [TBL] [Abstract][Full Text] [Related]
14. Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Marsh Z; Yang T; Nopo-Olazabal L; Wu S; Ingle T; Joshee N; Medina-Bolivar F Phytochemistry; 2014 Nov; 107():50-60. PubMed ID: 25236693 [TBL] [Abstract][Full Text] [Related]
15. Specific Flavonoids and Their Biosynthetic Pathway in Pei T; Yan M; Huang Y; Wei Y; Martin C; Zhao Q Front Plant Sci; 2022; 13():866282. PubMed ID: 35310641 [No Abstract] [Full Text] [Related]
16. Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Park CH; Xu H; Yeo HJ; Park YE; Hwang GS; Park NI; Park SU Metab Eng; 2021 Mar; 64():64-73. PubMed ID: 33486093 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. Makino T; Hishida A; Goda Y; Mizukami H J Nat Med; 2008 Jul; 62(3):294-9. PubMed ID: 18404307 [TBL] [Abstract][Full Text] [Related]
19. [Influence of cutting seedling on growth, quality and yield of both aerial and underground part by cutting seedling in Scutellaria baicalensis]. Liu RX; Li YJ; Li L; Miao XS; Wang XS; Zhang D; Wei SL Zhongguo Zhong Yao Za Zhi; 2016 Jun; 41(11):2049-2054. PubMed ID: 28901100 [TBL] [Abstract][Full Text] [Related]
20. Antimutagenic and antiradical properties of flavones from the roots of Scutellaria baicalensis georgi. Woźniak D; Lamer-Zarawska E; Matkowski A Nahrung; 2004 Feb; 48(1):9-12. PubMed ID: 15053344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]