These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35916207)

  • 1. Protein Cages Engineered for Interaction-Driven Selective Encapsulation of Biomolecules.
    Lee Y; Kim M; Kang JY; Jung Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35357-35365. PubMed ID: 35916207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Porous Protein Cage Nanoparticles as Cargo-Loadable and Ligand-Displayable Modular Delivery Nanoplatforms.
    Eom S; Jun H; Kim E; Min D; Kim H; Kang S
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58464-58476. PubMed ID: 39418329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The OP Protein Cage: A Versatile Molecular Delivery Platform.
    Edwardson TGW; Levasseur MD; Hilvert D
    Chimia (Aarau); 2021 Apr; 75(4):323-328. PubMed ID: 33902803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher.
    Choi H; Eom S; Kim HU; Bae Y; Jung HS; Kang S
    Biomacromolecules; 2021 Jul; 22(7):3028-3039. PubMed ID: 34142815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping of protein cargo molecules inside DNA origami nanocages.
    Scherf M; Scheffler F; Maffeo C; Kemper U; Ye J; Aksimentiev A; Seidel R; Reibetanz U
    Nanoscale; 2022 Dec; 14(48):18041-18050. PubMed ID: 36445741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineering Carboxysome Shells for Protein Cages with Programmable Cargo Targeting.
    Li T; Chang P; Chen W; Shi Z; Xue C; Dykes GF; Huang F; Wang Q; Liu LN
    ACS Nano; 2024 Mar; 18(10):7473-7484. PubMed ID: 38326220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EGFR Ligand Clustering on E2 Bionanoparticles for Targeted Delivery of Chemotherapeutics to Breast Cancer Cells.
    Lieser RM; Hartzell EJ; Yur D; Sullivan MO; Chen W
    Bioconjug Chem; 2022 Mar; 33(3):452-462. PubMed ID: 35167278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments.
    Liu Q; Shaukat A; Kyllönen D; Kostiainen MA
    Pharmaceutics; 2021 Sep; 13(10):. PubMed ID: 34683843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-tier supramolecular encapsulation of small molecules in a protein cage.
    Edwardson TGW; Tetter S; Hilvert D
    Nat Commun; 2020 Oct; 11(1):5410. PubMed ID: 33106476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Structure and Self-assembly of Negatively Supercharged Protein Cages].
    Sasaki E; Hilvert D
    Yakugaku Zasshi; 2019; 139(2):199-208. PubMed ID: 30713229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin: A Multifunctional Nanoplatform for Biological Detection, Imaging Diagnosis, and Drug Delivery.
    Song N; Zhang J; Zhai J; Hong J; Yuan C; Liang M
    Acc Chem Res; 2021 Sep; 54(17):3313-3325. PubMed ID: 34415728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
    Tarn D; Ashley CE; Xue M; Carnes EC; Zink JI; Brinker CJ
    Acc Chem Res; 2013 Mar; 46(3):792-801. PubMed ID: 23387478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural and artificial protein cages: design, structure and therapeutic applications.
    Heddle JG; Chakraborti S; Iwasaki K
    Curr Opin Struct Biol; 2017 Apr; 43():148-155. PubMed ID: 28359961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue.
    Kim H; Choi H; Bae Y; Kang S
    Biotechnol Bioeng; 2019 Nov; 116(11):2843-2851. PubMed ID: 31329283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing organic and metallo-organic hydrazone molecular cages as potential carriers for doxorubicin delivery.
    Montà-González G; Bastante-Rodríguez D; García-Fernández A; Lusby PJ; Martínez-Máñez R; Martí-Centelles V
    Chem Sci; 2024 Jul; 15(26):10010-10017. PubMed ID: 38966373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages.
    Llauró A; Luque D; Edwards E; Trus BL; Avera J; Reguera D; Douglas T; Pablo PJ; Castón JR
    Nanoscale; 2016 Apr; 8(17):9328-36. PubMed ID: 27091107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Protein-Based Encapsulation System with Calcium-Controlled Cargo Loading and Detachment.
    Lizatović R; Assent M; Barendregt A; Dahlin J; Bille A; Satzinger K; Tupina D; Heck AJR; Wennmalm S; André I
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11334-11338. PubMed ID: 29975817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Ligand-Operable Protein-Cages That Open Upon Specific Protein Binding.
    Lee EJ; Gladkov N; Miller JE; Yeates TO
    ACS Synth Biol; 2024 Jan; 13(1):157-167. PubMed ID: 38133598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of thrombin cleavage peptide into a protein cage for constructing a protease-responsive multifunctional delivery nanoplatform.
    Kang YJ; Park DC; Shin HH; Park J; Kang S
    Biomacromolecules; 2012 Dec; 13(12):4057-64. PubMed ID: 23163509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.
    Rother M; Nussbaumer MG; Renggli K; Bruns N
    Chem Soc Rev; 2016 Nov; 45(22):6213-6249. PubMed ID: 27426103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.