BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35916280)

  • 21. Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent.
    Delpiano GR; Tocco D; Medda L; Magner E; Salis A
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ratiometric fluorescent nanoprobes based on Resonance Rayleigh Scattering and inner filter effect for detecting alizarin red and Pb
    Yan F; Sun Z; Ma T; Sun X; Xu J; Wang R; Chen L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117843. PubMed ID: 31813723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver Nanoparticles Covered with pH-Sensitive Camptothecin-Loaded Polymer Prodrugs: Switchable Fluorescence "Off" or "On" and Drug Delivery Dynamics in Living Cells.
    Qiu L; Li JW; Hong CY; Pan CY
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40887-40897. PubMed ID: 29088537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(II) in aqueous solution.
    Chen J; Gao Y; Guo C; Wu G; Chen Y; Lin B
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):572-9. PubMed ID: 17574910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Al³⁺-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging.
    Liu H; Hao X; Duan C; Yang H; Lv Y; Xu H; Wang H; Huang F; Xiao D; Tian Z
    Nanoscale; 2013 Oct; 5(19):9340-7. PubMed ID: 23955117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upconversion nanoparticle-mOrange protein FRET nanoprobes for self-ratiometric/ratiometric determination of intracellular pH, and single cell pH imaging.
    Ghosh S; Chang YF; Yang DM; Chattopadhyay S
    Biosens Bioelectron; 2020 May; 155():112115. PubMed ID: 32217331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the synergistic effects of high-pressure homogenization and pH shifting on the formation of tryptophan-rich nanoparticles.
    Dong H; Yang L; Dadmohammadi Y; Li P; Lin T; He Y; Zhou Y; Li J; Meletharayil G; Kapoor R; Abbaspourrad A
    Food Chem; 2024 Feb; 434():137371. PubMed ID: 37708572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Stable Core-Shell Structured Semiconducting Polymer Nanoparticles for FRET-Based Intracellular pH Imaging.
    Bao B; Su P; Yang Z; Zhai X; Zhang J; Xu Y; Liu Y; Gu B; Wang L
    Adv Healthc Mater; 2019 Jul; 8(14):e1900255. PubMed ID: 31148405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypochlorite fluorescence sensing by phenylboronic acid-alizarin adduct based carbon dots.
    Simões EFC; da Silva LP; da Silva JCGE; Leitão JMM
    Talanta; 2020 Feb; 208():120447. PubMed ID: 31816774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability.
    Wan X; Wang D; Liu S
    Langmuir; 2010 Oct; 26(19):15574-9. PubMed ID: 20839827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous Preparation of Highly Stable Gold Nanoparticle Stabilized with ω-Sulfonylated Alkylsulfanylaniline.
    Mohieeldin Darwish MI; Takenoshita Y; Hamada T; Onitsuka S; Kurawaki J; Okamura H
    J Oleo Sci; 2017; 66(12):1349-1354. PubMed ID: 29199208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting
    Heck JG; Rox K; Lünsdorf H; Lückerath T; Klaassen N; Medina E; Goldmann O; Feldmann C
    ACS Omega; 2018 Aug; 3(8):8589-8594. PubMed ID: 31458988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composite fluorescent nanoparticles for biomedical imaging.
    Pansare VJ; Bruzek MJ; Adamson DH; Anthony J; Prud'homme RK
    Mol Imaging Biol; 2014 Apr; 16(2):180-8. PubMed ID: 24129739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH- and glucose-responsive core-shell hybrid nanoparticles with controllable metal-enhanced fluorescence effects.
    Zhang J; Ma N; Tang F; Cui Q; He F; Li L
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1747-51. PubMed ID: 22324454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.
    Kumar S; Aswal VK; Callow P
    Langmuir; 2014 Feb; 30(6):1588-98. PubMed ID: 24475981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic nanoparticles of malachite green with enhanced far-red emission: size-dependence of particle rigidity.
    Funada T; Hirose T; Tamai N; Yao H
    Phys Chem Chem Phys; 2015 Apr; 17(16):11006-13. PubMed ID: 25823740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-Dependent silica nanoparticle dissolution and cargo release.
    Giovaninni G; Moore CJ; Hall AJ; Byrne HJ; Gubala V
    Colloids Surf B Biointerfaces; 2018 Sep; 169():242-248. PubMed ID: 29778963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh
    Xu Y; Zhu BW; Li X; Li YF; Ye XM; Hu JN
    Biomaterials; 2022 Jan; 280():121077. PubMed ID: 34890974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth.
    Mochochoko T; Oluwafemi OS; Jumbam DN; Songca SP
    Carbohydr Polym; 2013 Oct; 98(1):290-4. PubMed ID: 23987347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.