BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3591649)

  • 1. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model.
    Andersen ME; MacNaughton MG; Clewell HJ; Paustenbach DJ
    Am Ind Hyg Assoc J; 1987 Apr; 48(4):335-43. PubMed ID: 3591649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data.
    Nakayama Y; Kishida F; Nakatsuka I; Matsuo M
    Environ Sci; 2005; 12(1):21-32. PubMed ID: 15793558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of physiologically based pharmacokinetic models to establish biological exposure indexes.
    Leung HW
    Am Ind Hyg Assoc J; 1992 Jun; 53(6):369-74. PubMed ID: 1605109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetics of inhaled styrene in rats and humans.
    Ramsey JC; Young JD
    Scand J Work Environ Health; 1978; 4 Suppl 2():84-91. PubMed ID: 734422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of physiologically based pharmacokinetic modeling in setting acute exposure guideline levels for methylene chloride.
    Bos PM; Zeilmaker MJ; van Eijkeren JC
    Toxicol Sci; 2006 Jun; 91(2):576-85. PubMed ID: 16569727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pharmacokinetic model to describe toxicokinetic interactions between 1,3-butadiene and styrene in rats: predictions for human exposure.
    Filser JG; Johanson G; Kessler W; Kreuzer PE; Stei P; Baur C; Csanády GA
    IARC Sci Publ; 1993; (127):65-78. PubMed ID: 8070888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of occupational exposure limits to unusual work schedules.
    Hickey JL; Reist PC
    Am Ind Hyg Assoc J; 1977 Nov; 38(11):613-21. PubMed ID: 930810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of biosolubility on pulmonary uptake and disposition of gases and vapors of lipophilic chemicals.
    Fiserova-Bergerova V; Tichy M; Di Carlo FJ
    Drug Metab Rev; 1984; 15(5-6):1033-70. PubMed ID: 6396052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the effects of carbon monoxide and methylene chloride on human performance.
    Putz VR; Johnson BL; Setzer JV
    J Environ Pathol Toxicol; 1979; 2(5):97-112. PubMed ID: 512567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicokinetics: an analytical tool for assessing chemical hazards to man.
    Clewell HJ; Andersen ME; MacNaughton MG; Stuart BO
    Aviat Space Environ Med; 1988 Nov; 59(11 Pt 2):A125-31. PubMed ID: 3202802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental and clinical hygienic studies of the toxicity of methylene chloride].
    Kashin LM; Makotchenko VM; Malinina-Putsenko VP; Mikhaĭlovskaia LF; Shmuter LM
    Vrach Delo; 1980 Jan; (1):100-3. PubMed ID: 7376571
    [No Abstract]   [Full Text] [Related]  

  • 12. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture.
    Pelekis M; Krishnan K
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):79-86. PubMed ID: 9056503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear pharmacokinetic models for evaluating unusual work schedules, exposure limits and body burdens of pollutants.
    Saltzman BE
    Am Ind Hyg Assoc J; 1988 May; 49(5):213-25. PubMed ID: 3400585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the uptake, metabolism and excretion of dichloromethane by man.
    Peterson JE
    Am Ind Hyg Assoc J; 1978 Jan; 39(1):41-7. PubMed ID: 629207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of pharmacokinetics to derive biological exposure indexes from threshold limit values.
    Leung HW; Paustenbach DJ
    Am Ind Hyg Assoc J; 1988 Sep; 49(9):445-50. PubMed ID: 3177223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans.
    Andersen ME; Clewell HJ; Gargas ML; MacNaughton MG; Reitz RH; Nolan RJ; McKenna MJ
    Toxicol Appl Pharmacol; 1991 Mar; 108(1):14-27. PubMed ID: 1900959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo metabolism of chloroform in B6C3F1 mice determined by the method of gas uptake: the effects of body temperature on tissue partition coefficients and metabolism.
    Gearhart JM; Seckel C; Vinegar A
    Toxicol Appl Pharmacol; 1993 Apr; 119(2):258-66. PubMed ID: 8480334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects in the liver of methylene chloride inhaled alone and with ethyl alcohol.
    Balmer MF; Smith FA; Leach LJ; Yuile CL
    Am Ind Hyg Assoc J; 1976 Jun; 37(6):345-52. PubMed ID: 937173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes of soman in multiple species.
    Sweeney RE; Langenberg JP; Maxwell DM
    Arch Toxicol; 2006 Nov; 80(11):719-31. PubMed ID: 16718492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene.
    Verner MA; McDougall R; Johanson G
    Toxicol Lett; 2012 Sep; 213(2):299-304. PubMed ID: 22677344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.