BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35917397)

  • 1. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening Based on Residue-Atom Distance Likelihood Potential and Graph Transformer.
    Shen C; Zhang X; Deng Y; Gao J; Wang D; Xu L; Pan P; Hou T; Kang Y
    J Med Chem; 2022 Aug; 65(15):10691-10706. PubMed ID: 35917397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction.
    Qu X; Dong L; Luo D; Si Y; Wang B
    J Chem Inf Model; 2024 Apr; 64(7):2263-2274. PubMed ID: 37433009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions.
    Yang C; Zhang Y
    J Chem Inf Model; 2022 Jun; 62(11):2696-2712. PubMed ID: 35579568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AGL-Score: Algebraic Graph Learning Score for Protein-Ligand Binding Scoring, Ranking, Docking, and Screening.
    Nguyen DD; Wei GW
    J Chem Inf Model; 2019 Jul; 59(7):3291-3304. PubMed ID: 31257871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generalized protein-ligand scoring framework with balanced scoring, docking, ranking and screening powers.
    Shen C; Zhang X; Hsieh CY; Deng Y; Wang D; Xu L; Wu J; Li D; Kang Y; Hou T; Pan P
    Chem Sci; 2023 Aug; 14(30):8129-8146. PubMed ID: 37538816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions.
    Lu J; Hou X; Wang C; Zhang Y
    J Chem Inf Model; 2019 Nov; 59(11):4540-4549. PubMed ID: 31638801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing assumptions and hypotheses for rescoring success in protein-ligand docking.
    O'Boyle NM; Liebeschuetz JW; Cole JC
    J Chem Inf Model; 2009 Aug; 49(8):1871-8. PubMed ID: 19645429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GB-score: Minimally designed machine learning scoring function based on distance-weighted interatomic contact features.
    Rayka M; Firouzi R
    Mol Inform; 2023 Mar; 42(3):e2200135. PubMed ID: 36722733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures.
    Bao J; He X; Zhang JZH
    J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction.
    Zhang X; Gao H; Wang H; Chen Z; Zhang Z; Chen X; Li Y; Qi Y; Wang R
    J Chem Inf Model; 2024 Apr; 64(7):2205-2220. PubMed ID: 37319418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein-Protein Interfaces.
    Singh N; Villoutreix BO
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Scoring Neural Network Replacing the Scoring Function Components to Improve the Performance of Structure-Based Molecular Docking.
    Yang L; Yang G; Chen X; Yang Q; Yao X; Bing Z; Niu Y; Huang L; Yang L
    ACS Chem Neurosci; 2021 Jun; 12(12):2133-2142. PubMed ID: 34081851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2.
    da Silva Figueiredo Celestino Gomes P; Da Silva F; Bret G; Rognan D
    J Comput Aided Mol Des; 2018 Jan; 32(1):75-87. PubMed ID: 28766097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and accurate large library ligand docking with KarmaDock.
    Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T
    Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.