These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35917397)

  • 41. An evaluation of combined strategies for improving the performance of molecular docking.
    Xu S; Wang L; Pan X
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150003. PubMed ID: 33641636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening?
    Shen C; Weng G; Zhang X; Leung EL; Yao X; Pang J; Chai X; Li D; Wang E; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local Interaction Density (LID), a Fast and Efficient Tool to Prioritize Docking Poses.
    Jacquemard C; Tran-Nguyen VK; Drwal MN; Rognan D; Kellenberger E
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31323745
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set.
    Li Y; Liu Z; Li J; Han L; Liu J; Zhao Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1700-16. PubMed ID: 24716849
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fragment-Based Ligand-Protein Contact Statistics: Application to Docking Simulations.
    Macari G; Toti D; Del Moro C; Polticelli F
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31117183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Consensus Docking Strategy to Improve Ligand Pose Prediction.
    Ren X; Shi YS; Zhang Y; Liu B; Zhang LH; Peng YB; Zeng R
    J Chem Inf Model; 2018 Aug; 58(8):1662-1668. PubMed ID: 30044626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.
    Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T
    J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Negative Image-Based Rescoring: Using Cavity Information to Improve Docking Screening.
    Pentikäinen OT; Postila PA
    Methods Mol Biol; 2021; 2266():141-154. PubMed ID: 33759125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Consistent Scheme for Gradient-Based Optimization of Protein
    Flachsenberg F; Meyder A; Sommer K; Penner P; Rarey M
    J Chem Inf Model; 2020 Dec; 60(12):6502-6522. PubMed ID: 33258376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
    Baek M; Shin WH; Chung HW; Seok C
    J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein-Protein Interfaces.
    Singh N; Chaput L; Villoutreix BO
    J Chem Inf Model; 2020 Aug; 60(8):3910-3934. PubMed ID: 32786511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved drug-target interaction prediction with intermolecular graph transformer.
    Liu S; Wang Y; Deng Y; He L; Shao B; Yin J; Zheng N; Liu TY; Wang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514186
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fragmented blind docking: a novel protein-ligand binding prediction protocol.
    Grasso G; Di Gregorio A; Mavkov B; Piga D; Labate GFD; Danani A; Deriu MA
    J Biomol Struct Dyn; 2022; 40(24):13472-13481. PubMed ID: 34641761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina.
    Macari G; Toti D; Pasquadibisceglie A; Polticelli F
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333976
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking.
    Li J; Fu A; Zhang L
    Interdiscip Sci; 2019 Jun; 11(2):320-328. PubMed ID: 30877639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation.
    Wang Z; Pan H; Sun H; Kang Y; Liu H; Cao D; Hou T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.