These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35917665)

  • 1. Brain-inspired meta-reinforcement learning cognitive control in conflictual inhibition decision-making task for artificial agents.
    Robertazzi F; Vissani M; Schillaci G; Falotico E
    Neural Netw; 2022 Oct; 154():283-302. PubMed ID: 35917665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Errors in Action Timing and Inhibition Facilitate Learning by Tuning Distinct Mechanisms in the Underlying Decision Process.
    Dunovan K; Verstynen T
    J Neurosci; 2019 Mar; 39(12):2251-2264. PubMed ID: 30655353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Kernel Reinforcement Learning Decoding Framework Integrating Neural and Feedback Signals for Brain Control.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-learning, social cognition and consciousness in brains and machines.
    Langdon A; Botvinick M; Nakahara H; Tanaka K; Matsumoto M; Kanai R
    Neural Netw; 2022 Jan; 145():80-89. PubMed ID: 34735893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of the basal ganglia to action sequence learning and performance.
    Garr E
    Neurosci Biobehav Rev; 2019 Dec; 107():279-295. PubMed ID: 31541637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context meta-reinforcement learning via neuromodulation.
    Ben-Iwhiwhu E; Dick J; Ketz NA; Pilly PK; Soltoggio A
    Neural Netw; 2022 Aug; 152():70-79. PubMed ID: 35512540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalized reinforcement learning based deep neural network agent model for diverse cognitive constructs.
    Nair SS; Muddapu VR; Vigneswaran C; Balasubramani PP; Ramanathan DS; Mishra J; Chakravarthy VS
    Sci Rep; 2023 Apr; 13(1):5928. PubMed ID: 37045887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Brain-Inspired Decision-Making Spiking Neural Network and Its Application in Unmanned Aerial Vehicle.
    Zhao F; Zeng Y; Xu B
    Front Neurorobot; 2018; 12():56. PubMed ID: 30258359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing.
    Jahfari S; Ridderinkhof KR; Collins AGE; Knapen T; Waldorp LJ; Frank MJ
    Cereb Cortex; 2019 May; 29(5):1969-1983. PubMed ID: 29912363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of prediction and outcomes in adaptive cognitive control.
    Schiffer AM; Waszak F; Yeung N
    J Physiol Paris; 2015; 109(1-3):38-52. PubMed ID: 25698177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fear-Neuro-Inspired Reinforcement Learning for Safe Autonomous Driving.
    He X; Wu J; Huang Z; Hu Z; Wang J; Sangiovanni-Vincentelli A; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):267-279. PubMed ID: 37801378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task.
    Zhang X; Liu L; Long G; Jiang J; Liu S
    Neural Netw; 2021 Feb; 134():1-10. PubMed ID: 33276194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture.
    Mitsopoulos K; Somers S; Schooler J; Lebiere C; Pirolli P; Thomson R
    Top Cogn Sci; 2022 Oct; 14(4):756-779. PubMed ID: 34467649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-learning in reinforcement learning.
    Schweighofer N; Doya K
    Neural Netw; 2003 Jan; 16(1):5-9. PubMed ID: 12576101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emergence of saliency and novelty responses from Reinforcement Learning principles.
    Laurent PA
    Neural Netw; 2008 Dec; 21(10):1493-9. PubMed ID: 18938058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement learning and its connections with neuroscience and psychology.
    Subramanian A; Chitlangia S; Baths V
    Neural Netw; 2022 Jan; 145():271-287. PubMed ID: 34781215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.