BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35917779)

  • 1. Mechanochemical generation of N,N-diglycated glycine and MS/MS characterization of its isomeric composition.
    Xing H; Mossine VV; Yaylayan V
    Food Chem; 2022 Dec; 397():133757. PubMed ID: 35917779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into Isomeric Diversity of Glycated Amino Acids in Maillard Reaction Mixtures.
    Xing H; Yaylayan V
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemical generation of Schiff bases and Amadori products and utilization of diagnostic MS/MS fragmentation patterns in negative ionization mode for their analysis.
    Xing H; Yaylayan V
    Carbohydr Res; 2020 Sep; 495():108091. PubMed ID: 32807359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic MS/MS fragmentation patterns for the discrimination between Schiff bases and their Amadori or Heyns rearrangement products.
    Xing H; Mossine VV; Yaylayan V
    Carbohydr Res; 2020 May; 491():107985. PubMed ID: 32213351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine, Diglycine, and Triglycine Exhibit Different Reactivities in the Formation and Degradation of Amadori Compounds.
    Xia X; Zhai Y; Cui H; Zhang H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(47):14907-14918. PubMed ID: 36378039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maillard Browning Inhibition by Ellagic Acid via Its Adduct Formation with the Amadori Rearrangement Product.
    Cui H; Wang Z; Ma M; Hayat K; Zhang Q; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Sep; 69(34):9924-9933. PubMed ID: 34427083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids.
    Nikolov PY; Yaylayan VA
    J Agric Food Chem; 2011 Jun; 59(11):6099-107. PubMed ID: 21557617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo synthesis of amino acids during the maillard reaction: qTOF/ESI mass spectrometric evidence for the mechanism of Akabori transformation.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2015 Jan; 63(1):328-34. PubMed ID: 25514107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-ion-assisted structural and anomeric analysis of Amadori compounds by electrospray ionization mass spectrometry.
    Bai Y; Liang Y; Li G; Wu S; Wang G; Li Y; Liu Y; Chen C
    Rapid Commun Mass Spectrom; 2021 Jan; 35(1):e8960. PubMed ID: 33002251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adducts Derived from (-)-Epigallocatechin Gallate-Amadori Rearrangement Products in Aqueous Reaction Systems: Characterization, Formation, and Thermolysis.
    Yu J; Cui H; Zhang Q; Hayat K; Zhan H; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10902-10911. PubMed ID: 32893622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of flavanols with amino acids: postoxidative reactivity of the B-ring of catechin with glycine.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2014 Apr; 62(17):3831-6. PubMed ID: 24720790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Schiff base adducts of 2,3-butanedione with glycine: formation of pyrazine rings with the participation of amino acid carbon atoms.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2012 Nov; 60(45):11440-5. PubMed ID: 23106172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Basis for the Simultaneous Enhancement of the Aroma-Generating Capacity and Bioactivity of Maillard Reaction Precursors through Mechanochemistry.
    Xing H; Mu K; Kitts DD; Yaylayan VA
    J Agric Food Chem; 2022 Oct; 70(42):13637-13650. PubMed ID: 36226926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical interaction between the sugar moieties in N, N-di-glycated alanine derivatives.
    Kim ES; Yaylayan V
    Carbohydr Res; 2024 Jun; 540():109139. PubMed ID: 38728964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols by FTIR spectroscopy--a possible route to Amadori products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2003 Oct; 51(22):6537-43. PubMed ID: 14558775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry.
    Davidek T; Kraehenbuehl K; Devaud S; Robert F; Blank I
    Anal Chem; 2005 Jan; 77(1):140-7. PubMed ID: 15623289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of chiral amino esters by asymmetric phase-transfer catalyzed alkylations of Schiff bases in a ball mill.
    Nun P; Pérez V; Calmès M; Martinez J; Lamaty F
    Chemistry; 2012 Mar; 18(12):3773-9. PubMed ID: 22322525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid complexing of oxoacylglycerols with amino acids, peptides and aminophospholipids.
    Kurvinen JP; Kuksis A; Ravandi A; Sjövall O; Kallio H
    Lipids; 1999 Mar; 34(3):299-305. PubMed ID: 10230725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Amadori compounds by capillary electrophoresis coupled to tandem mass spectrometry.
    Hau J; Devaud S; Blank I
    Electrophoresis; 2004 Jul; 25(13):2077-2083. PubMed ID: 15237408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility Study of Amadori Rearrangement Products of Glycine, Diglycine, Triglycine, and Glucose as Potential Food Additives for Production, Stability, and Flavor Formation.
    Luo Y; Zhu S; Peng J; Cui H; Huang Q; Xu B; Ho CT
    J Agric Food Chem; 2024 Jan; 72(1):657-669. PubMed ID: 38109376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.