These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 35917915)
1. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate. Rohles C; Pauli S; Gießelmann G; Kohlstedt M; Becker J; Wittmann C Metab Eng; 2022 Sep; 73():168-181. PubMed ID: 35917915 [TBL] [Abstract][Full Text] [Related]
2. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
6. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Joo JC; Oh YH; Yu JH; Hyun SM; Khang TU; Kang KH; Song BK; Park K; Oh MK; Lee SY; Park SJ Bioresour Technol; 2017 Dec; 245(Pt B):1692-1700. PubMed ID: 28579174 [TBL] [Abstract][Full Text] [Related]
7. Efficient Production of the Dicarboxylic Acid Glutarate by Pérez-García F; Jorge JMP; Dreyszas A; Risse JM; Wendisch VF Front Microbiol; 2018; 9():2589. PubMed ID: 30425699 [TBL] [Abstract][Full Text] [Related]
8. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Han T; Kim GB; Lee SY Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer. Han T; Lee SY Metab Eng; 2023 Sep; 79():78-85. PubMed ID: 37451533 [TBL] [Abstract][Full Text] [Related]
10. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Pauli S; Kohlstedt M; Lamber J; Weiland F; Becker J; Wittmann C Metab Eng; 2023 May; 77():100-117. PubMed ID: 36931556 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Kim SY; Lee J; Lee SY Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446 [TBL] [Abstract][Full Text] [Related]
13. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448 [TBL] [Abstract][Full Text] [Related]
14. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Schneider J; Eberhardt D; Wendisch VF Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950 [TBL] [Abstract][Full Text] [Related]
15. Engineering Escherichia coli for Glutarate Production as the C Zhao M; Li G; Deng Y Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858204 [TBL] [Abstract][Full Text] [Related]
16. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Adkins J; Jordan J; Nielsen DR Biotechnol Bioeng; 2013 Jun; 110(6):1726-34. PubMed ID: 23296991 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890 [TBL] [Abstract][Full Text] [Related]
18. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Pérez-García F; Max Risse J; Friehs K; Wendisch VF Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28169491 [TBL] [Abstract][Full Text] [Related]
19. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase. Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]