BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35917940)

  • 1. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer.
    Hasan A; Rizvi SF; Parveen S; Mir SS
    Life Sci; 2022 Oct; 306():120852. PubMed ID: 35917940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-shock proteins: chaperoning DNA repair.
    Dubrez L; Causse S; Borges Bonan N; Dumétier B; Garrido C
    Oncogene; 2020 Jan; 39(3):516-529. PubMed ID: 31541194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response.
    Lang BJ; Guerrero ME; Prince TL; Okusha Y; Bonorino C; Calderwood SK
    Arch Toxicol; 2021 Jun; 95(6):1943-1970. PubMed ID: 34003342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock proteins and DNA repair mechanisms: an updated overview.
    Sottile ML; Nadin SB
    Cell Stress Chaperones; 2018 May; 23(3):303-315. PubMed ID: 28952019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges.
    Alagar Boopathy LR; Jacob-Tomas S; Alecki C; Vera M
    J Biol Chem; 2022 May; 298(5):101796. PubMed ID: 35248532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.
    Brehme M; Voisine C
    Dis Model Mech; 2016 Aug; 9(8):823-38. PubMed ID: 27491084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock proteins in cell signaling and cancer.
    Lang BJ; Prince TL; Okusha Y; Bunch H; Calderwood SK
    Biochim Biophys Acta Mol Cell Res; 2022 Mar; 1869(3):119187. PubMed ID: 34906617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review.
    Calderwood SK; Murshid A; Prince T
    Gerontology; 2009; 55(5):550-8. PubMed ID: 19546513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome.
    Huiting W; Dekker SL; van der Lienden JCJ; Mergener R; Musskopf MK; Furtado GV; Gerrits E; Coit D; Oghbaie M; Di Stefano LH; Schepers H; van Waarde-Verhagen MAWH; Couzijn S; Barazzuol L; LaCava J; Kampinga HH; Bergink S
    Elife; 2022 Feb; 11():. PubMed ID: 35200138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncoding RNAs in DNA Damage Response: Opportunities for Cancer Therapeutics.
    Arjumand W; Asiaf A; Ahmad ST
    Methods Mol Biol; 2018; 1699():3-21. PubMed ID: 29086365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome instability and loss of protein homeostasis: converging paths to neurodegeneration?
    Ainslie A; Huiting W; Barazzuol L; Bergink S
    Open Biol; 2021 Apr; 11(4):200296. PubMed ID: 33878947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress.
    Kijima T; Prince T; Neckers L; Koga F; Fujii Y
    Expert Opin Ther Targets; 2019 May; 23(5):369-377. PubMed ID: 30931649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome Stability as a Key Factor of Genome Integrity.
    Gumeni S; Evangelakou Z; Gorgoulis VG; Trougakos IP
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28937603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear Genomic Instability and Aging.
    Niedernhofer LJ; Gurkar AU; Wang Y; Vijg J; Hoeijmakers JHJ; Robbins PD
    Annu Rev Biochem; 2018 Jun; 87():295-322. PubMed ID: 29925262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Instability in Cancer: Molecular Mechanisms and Therapeutic Potentials.
    Salmaninejad A; Ilkhani K; Marzban H; Navashenaq JG; Rahimirad S; Radnia F; Yousefi M; Bahmanpour Z; Azhdari S; Sahebkar A
    Curr Pharm Des; 2021; 27(28):3161-3169. PubMed ID: 33902409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting DNA Repair.
    Curigliano G
    Handb Exp Pharmacol; 2018; 249():161-180. PubMed ID: 30341723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperoning the Cancer: The Proteostatic Functions of the Heat Shock Proteins in Cancer.
    Vahid S; Thaper D; Zoubeidi A
    Recent Pat Anticancer Drug Discov; 2017; 12(1):35-47. PubMed ID: 27809750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition.
    Ferguson LR; Chen H; Collins AR; Connell M; Damia G; Dasgupta S; Malhotra M; Meeker AK; Amedei A; Amin A; Ashraf SS; Aquilano K; Azmi AS; Bhakta D; Bilsland A; Boosani CS; Chen S; Ciriolo MR; Fujii H; Guha G; Halicka D; Helferich WG; Keith WN; Mohammed SI; Niccolai E; Yang X; Honoki K; Parslow VR; Prakash S; Rezazadeh S; Shackelford RE; Sidransky D; Tran PT; Yang ES; Maxwell CA
    Semin Cancer Biol; 2015 Dec; 35 Suppl(Suppl):S5-S24. PubMed ID: 25869442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic instability and metabolism in cancer.
    Li H; Zimmerman SE; Weyemi U
    Int Rev Cell Mol Biol; 2021; 364():241-265. PubMed ID: 34507785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the DNA damage response.
    Dufey E; Bravo-San Pedro JM; Eggers C; González-Quiroz M; Urra H; Sagredo AI; Sepulveda D; Pihán P; Carreras-Sureda A; Hazari Y; Sagredo EA; Gutierrez D; Valls C; Papaioannou A; Acosta-Alvear D; Campos G; Domingos PM; Pedeux R; Chevet E; Alvarez A; Godoy P; Walter P; Glavic A; Kroemer G; Hetz C
    Nat Commun; 2020 May; 11(1):2401. PubMed ID: 32409639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.