BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35917975)

  • 1. A green approach towards sorption of CO
    Kumar A; Singh E; Mishra R; Lo SL; Kumar S
    Environ Res; 2022 Nov; 214(Pt 2):113954. PubMed ID: 35917975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Goel C; Mohan S; Dinesha P
    Sci Total Environ; 2021 Dec; 798():149296. PubMed ID: 34325142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated carbons from biomass-based sources for CO
    Abuelnoor N; AlHajaj A; Khaleel M; Vega LF; Abu-Zahra MRM
    Chemosphere; 2021 Nov; 282():131111. PubMed ID: 34470163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M; Elfaki J; Usman A; Hussain Q; Ok YS
    Environ Res; 2019 Jul; 174():69-79. PubMed ID: 31054524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of Soil Carbon Dioxide by Biochar and Engineered Porous Carbons.
    Ringsby AJ; Ross CM; Maher K
    Environ Sci Technol; 2024 May; 58(19):8313-8325. PubMed ID: 38689207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical transformation of CO2 during its capture by waste biomass derived biochars.
    Xu X; Kan Y; Zhao L; Cao X
    Environ Pollut; 2016 Jun; 213():533-540. PubMed ID: 26995449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry.
    Igalavithana AD; Choi SW; Shang J; Hanif A; Dissanayake PD; Tsang DCW; Kwon JH; Lee KB; Ok YS
    Sci Total Environ; 2020 Oct; 739():139845. PubMed ID: 32758935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gasification biochar from biowaste (food waste and wood waste) for effective CO
    Igalavithana AD; Choi SW; Dissanayake PD; Shang J; Wang CH; Yang X; Kim S; Tsang DCW; Lee KB; Ok YS
    J Hazard Mater; 2020 Jun; 391():121147. PubMed ID: 32145924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable biochar derived from mixed sewage sludge and pine sawdust for carbon dioxide capture.
    Li K; Niu X; Zhang D; Guo H; Zhu X; Yin H; Lin Z; Fu M
    Environ Pollut; 2022 Aug; 306():119399. PubMed ID: 35525511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of CO
    Zubbri NA; Mohamed AR; Kamiuchi N; Mohammadi M
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):11809-11829. PubMed ID: 31975005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Application of Biochar for CO
    Zhang C; Ji Y; Li C; Zhang Y; Sun S; Xu Y; Jiang L; Wu C
    Ind Eng Chem Res; 2023 Oct; 62(42):17168-17181. PubMed ID: 37900302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar as potential precursors for activated carbon production: parametric analysis and multi-response optimization.
    Rashidi NA; Yusup S
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27480-27490. PubMed ID: 31907816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes.
    Ben Salem I; El Gamal M; Sharma M; Hameedi S; Howari FM
    J Environ Manage; 2021 Dec; 299():113644. PubMed ID: 34474257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement.
    Abd AA; Othman MR; Kim J
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43329-43364. PubMed ID: 34189695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental strategy for the preparation of adsorbent materials from torrefied palm kernel shell oriented to CO
    Cordoba-Ramirez M; Chejne F; Alean J; Gómez CA; Navarro-Gil Á; Ábrego J; Gea G
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18765-18784. PubMed ID: 38349490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into CO
    Li K; Zhang D; Niu X; Guo H; Yu Y; Tang Z; Lin Z; Fu M
    Sci Total Environ; 2022 Jun; 826():154133. PubMed ID: 35219664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO
    Serafin J; Ouzzine M; Cruz OF; Sreńscek-Nazzal J; Campello Gómez I; Azar FZ; Rey Mafull CA; Hotza D; Rambo CR
    Waste Manag; 2021 Dec; 136():273-282. PubMed ID: 34737129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Pressure Adsorption of CO
    Lutyński M; Kielar J; Gajda D; Mikeska M; Najser J
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.
    Son EB; Poo KM; Chang JS; Chae KJ
    Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.