BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 359187)

  • 1. Efficiency of bacterial filtration in various commercial air filters for hospital air conditioning.
    Furuhashi M
    Bull Tokyo Med Dent Univ; 1978 Sep; 25(3):147-55. PubMed ID: 359187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems.
    Nakamura H
    Bull Tokyo Med Dent Univ; 1987 Jun; 34(2):25-40. PubMed ID: 3127068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.
    Alderman SL; Parsons MS; Hogancamp KU; Waggoner CA
    J Occup Environ Hyg; 2008 Nov; 5(11):713-20. PubMed ID: 18726819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the commercial bacterial air samplers by the new bacterial aerosol generator.
    Furuhashi M; Miyamae T
    Bull Tokyo Med Dent Univ; 1981 Mar; 28(1):7-21. PubMed ID: 7011587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the microbial filtration efficiency of surgical face masks--with special reference to the non-woven fabric mask.
    Furuhashi M
    Bull Tokyo Med Dent Univ; 1978 Mar; 25(1):7-15. PubMed ID: 343940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.
    Huang R; Agranovski I; Pyankov O; Grinshpun S
    Indoor Air; 2008 Apr; 18(2):106-12. PubMed ID: 18333990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction in MRSA environmental contamination with a portable HEPA-filtration unit.
    Boswell TC; Fox PC
    J Hosp Infect; 2006 May; 63(1):47-54. PubMed ID: 16517004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of novel cardboard filters very effective in removing airborne bacteria from confined environments.
    Candiani G; Del Curto B; Malloggi C; Cigada A
    J Appl Biomater Biomech; 2011; 9(3):207-13. PubMed ID: 22190266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time evaluation of ventilation filter-bank systems.
    Moyer ES; Commodore MA; Hayes JL; Fotta SA; Berardinelli SP
    J Occup Environ Hyg; 2007 Jan; 4(1):58-69. PubMed ID: 17162482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Worst case" aerosol testing parameters: I. Sodium chloride and dioctyl phthalate aerosol filter efficiency as a function of particle size and flow rate.
    Stevens GA; Moyer ES
    Am Ind Hyg Assoc J; 1989 May; 50(5):257-64. PubMed ID: 2729101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effectiveness of stand alone air cleaners for shelter-in-place.
    Ward M; Siegel JA; Corsi RL
    Indoor Air; 2005 Apr; 15(2):127-34. PubMed ID: 15737155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Worst case" aerosol testing parameters: II. Efficiency dependence of commercial respirator filters on humidity pretreatment.
    Moyer ES; Stevens GA
    Am Ind Hyg Assoc J; 1989 May; 50(5):265-70. PubMed ID: 2729102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetration of submicron aerosols through high-efficiency air filters.
    Yamada Y; Miyamoto K; Mori T; Koizumi A
    Health Phys; 1984 Mar; 46(3):543-7. PubMed ID: 6698782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot study of directional airflow and containment of airborne particles in the size of Mycobacterium tuberculosis in an operating room.
    Olmsted RN
    Am J Infect Control; 2008 May; 36(4):260-7. PubMed ID: 18455046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A methodological study on testing and evaluating of filtration efficiency of canister against microbial aerosol].
    Wen ZB; Zhao JJ; Li JS; Wang J; Lu JC; Li N
    Zhonghua Yu Fang Yi Xue Za Zhi; 2009 Aug; 43(8):686-9. PubMed ID: 20021847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the risk of infectious aerosols leaking to the environment from BSL-3 laboratory HEPA air filtration systems using model bacterial aerosols.
    Wen Z; Yang W; Li N; Wang J; Hu L; Li J; Yin Z; Zhang K; Dong X
    Particuology; 2014 Apr; 13():82-87. PubMed ID: 38620193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powered, air-purifying particulate respirator filter penetration by a DOP aerosol.
    Martin S; Moyer E; Jensen P
    J Occup Environ Hyg; 2006 Nov; 3(11):620-30. PubMed ID: 17086666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Serratia marcescens aerosols using an electrostatic precipitator.
    Ko G; Burge H
    J Microbiol Biotechnol; 2007 Oct; 17(10):1622-8. PubMed ID: 18156777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collection of biological and non-biological particles by new and used filters made from glass and electrostatically charged synthetic fibers.
    Raynor PC; Kim BG; Ramachandran G; Strommen MR; Horns JH; Streifel AJ
    Indoor Air; 2008 Feb; 18(1):51-62. PubMed ID: 18093124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TB engineering controls: mobile high-efficiency-filter air cleaners.
    Health Devices; 1995 Oct; 24(10):368-418. PubMed ID: 8567309
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.