These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35918791)

  • 1. Visible-Light-Degradable 3D Microstructures in Aqueous Environments.
    Gernhardt M; Truong VX; Barner-Kowollik C
    Adv Mater; 2022 Sep; 34(39):e2203474. PubMed ID: 35918791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the Mechanical Properties of 3D Microstructures Using Visible Light Post-Manufacturing.
    Gernhardt M; Blasco E; Hippler M; Blinco J; Bastmeyer M; Wegener M; Frisch H; Barner-Kowollik C
    Adv Mater; 2019 Jul; 31(30):e1901269. PubMed ID: 31155785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shining Light on Poly(ethylene glycol): From Polymer Modification to 3D Laser Printing of Water Erasable Microstructures.
    Houck HA; Müller P; Wegener M; Barner-Kowollik C; Du Prez FE; Blasco E
    Adv Mater; 2020 Aug; 32(34):e2003060. PubMed ID: 32644269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Functions from a Single Photoresist: Tuning Microstructure Degradability from Light-Stabilized Dynamic Materials.
    Gauci SC; Ehrmann K; Gernhardt M; Tuten B; Blasco E; Frisch H; Jayalatharachchi V; Blinco JP; Houck HA; Barner-Kowollik C
    Adv Mater; 2023 Jun; 35(22):e2300151. PubMed ID: 36869278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography.
    Saha SK; Oakdale JS; Cuadra JA; Divin C; Ye J; Forien JB; Bayu Aji LB; Biener J; Smith WL
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1164-1172. PubMed ID: 29171264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Laser Writing of Magneto-Photonic Sub-Microstructures for Prospective Applications in Biomedical Engineering.
    Au TH; Trinh DT; Tong QC; Do DB; Nguyen DP; Phan MH; Lai ND
    Nanomaterials (Basel); 2017 May; 7(5):. PubMed ID: 28486409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Laser Writing of Micro-Nano Filters Based on Three-Photon Polymerization.
    Jue J; Gan Z
    ACS Appl Mater Interfaces; 2024 Sep; 16(36):48406-48411. PubMed ID: 39208328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two in One: Light as a Tool for 3D Printing and Erasing at the Microscale.
    Batchelor R; Messer T; Hippler M; Wegener M; Barner-Kowollik C; Blasco E
    Adv Mater; 2019 Oct; 31(40):e1904085. PubMed ID: 31420930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adding chemically selective subtraction to multi-material 3D additive manufacturing.
    Gräfe D; Wickberg A; Zieger MM; Wegener M; Blasco E; Barner-Kowollik C
    Nat Commun; 2018 Jul; 9(1):2788. PubMed ID: 30018325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleaving Direct-Laser-Written Microstructures on Demand.
    Zieger MM; Mueller P; Quick AS; Wegener M; Barner-Kowollik C
    Angew Chem Int Ed Engl; 2017 May; 56(20):5625-5629. PubMed ID: 28407401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Precision and Rapid Direct Laser Writing Using a Liquid Two-Photon Polymerization Initiator.
    Cao C; Shen X; Chen S; He M; Wang H; Ding C; Zhu D; Dong J; Chen H; Huang N; Kuang C; Jin M; Liu X
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30870-30879. PubMed ID: 37316963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness.
    Lay CL; Lee YH; Lee MR; Phang IY; Ling XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8145-53. PubMed ID: 26974854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimaterial 3D laser microprinting using an integrated microfluidic system.
    Mayer F; Richter S; Westhauser J; Blasco E; Barner-Kowollik C; Wegener M
    Sci Adv; 2019 Feb; 5(2):eaau9160. PubMed ID: 30783624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Laser Writing of Silica Nanoparticle Nanocomposites: Probing Mechanical Reinforcement and Understanding Structural Color from Design Parameters.
    Augustine A; Qian J; Faraone T; Kolagatla S; Prochukhan N; Morris MA; Bradley AL; Florea L; Delaney C
    Small; 2024 Jul; 20(30):e2310058. PubMed ID: 38441362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field.
    Carlotti M; Tricinci O; den Hoed F; Palagi S; Mattoli V
    Open Res Eur; 2021; 1():129. PubMed ID: 37645193
    [No Abstract]   [Full Text] [Related]  

  • 18. Photoresist Development for 3D Printing of Conductive Microstructures via Two-Photon Polymerization.
    Zhou X; Liu X; Gu Z
    Adv Mater; 2024 Nov; 36(48):e2409326. PubMed ID: 39397334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOWARD CONTROLLED-RELEASE DRUG DELIVERY MICROCARRIERS ENABLED BY DIRECT LASER WRITING 3D PRINTING.
    Sarker S; Forghani K; Wen Z; Halli RN; Hoag S; Flank S; Sochol RD
    Proc IEEE Int Conf Micro Electro Mech Syst; 2024 Jan; 2024():433-436. PubMed ID: 38482161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-Resolution Imaging with Direct Laser Writing-Printed Microstructures.
    Du B; Zhang H; Xia J; Wu J; Ding H; Tong G
    J Phys Chem A; 2020 Sep; 124(35):7211-7216. PubMed ID: 32786979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.