BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35918897)

  • 1. 5-Fluorouracil reduces the fibrotic scar via inhibiting matrix metalloproteinase 9 and stabilizing microtubules after spinal cord injury.
    Xu Y; He X; Wang Y; Jian J; Peng X; Zhou L; Kang Y; Wang T
    CNS Neurosci Ther; 2022 Dec; 28(12):2011-2023. PubMed ID: 35918897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SU16f inhibits fibrotic scar formation and facilitates axon regeneration and locomotor function recovery after spinal cord injury by blocking the PDGFRβ pathway.
    Li Z; Yu S; Liu Y; Hu X; Li Y; Xiao Z; Chen Y; Tian D; Xu X; Cheng L; Zheng M; Jing J
    J Neuroinflammation; 2022 Apr; 19(1):95. PubMed ID: 35429978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TGFβ1/SMADs/Snail1 signaling axis mediates pericyte-derived fibrous scar formation after spinal cord injury.
    Huang Y; Liu R; Meng T; Zhang B; Ma J; Liu X
    Int Immunopharmacol; 2024 Feb; 128():111482. PubMed ID: 38237223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.
    Zhu Y; Soderblom C; Krishnan V; Ashbaugh J; Bethea JR; Lee JK
    Neurobiol Dis; 2015 Feb; 74():114-25. PubMed ID: 25461258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of matrix metalloproteinases during axonal regeneration in the goldfish spinal cord.
    Takeda A; Kanemura A; Funakoshi K
    J Chem Neuroanat; 2021 Dec; 118():102041. PubMed ID: 34774721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel compound, denosomin, ameliorates spinal cord injury via axonal growth associated with astrocyte-secreted vimentin.
    Teshigawara K; Kuboyama T; Shigyo M; Nagata A; Sugimoto K; Matsuya Y; Tohda C
    Br J Pharmacol; 2013 Feb; 168(4):903-19. PubMed ID: 22978525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibronectin Matrix Assembly after Spinal Cord Injury.
    Zhu Y; Soderblom C; Trojanowsky M; Lee DH; Lee JK
    J Neurotrauma; 2015 Aug; 32(15):1158-67. PubMed ID: 25492623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury.
    Vadivelu S; Stewart TJ; Qu Y; Horn K; Liu S; Li Q; Silver J; McDonald JW
    Stem Cells Transl Med; 2015 Apr; 4(4):401-11. PubMed ID: 25713464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury.
    Yao F; Luo Y; Liu YC; Chen YH; Li YT; Hu XY; You XY; Yu SS; Li ZY; Chen L; Tian DS; Zheng MG; Cheng L; Jing JH
    Inflamm Regen; 2022 Sep; 42(1):44. PubMed ID: 36163271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-functional hydrogel system for spinal cord regeneration with sustained release of arylsulfatase B alleviates fibrotic microenvironment and promotes axonal regeneration.
    Park HH; Kim YM; Anh Hong LT; Kim HS; Kim SH; Jin X; Hwang DH; Kwon MJ; Song SC; Kim BG
    Biomaterials; 2022 May; 284():121526. PubMed ID: 35461098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fingolimod (FTY720) Hinders Interferon-γ-Mediated Fibrotic Scar Formation and Facilitates Neurological Recovery After Spinal Cord Injury.
    Li Y; Chen Y; Hu X; Ouyang F; Li J; Huang J; Ye J; Shan F; Luo Y; Yu S; Li Z; Yao F; Liu Y; Shi Y; Zheng M; Cheng L; Jing J
    J Neurotrauma; 2023 Dec; 40(23-24):2580-2595. PubMed ID: 36879472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury.
    Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H
    J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocytic Cebpd Regulates Pentraxin 3 Expression to Promote Fibrotic Scar Formation After Spinal Cord Injury.
    Wang SM; Hsu JC; Ko CY; Wu HE; Hsiao YW; Wang JM
    Mol Neurobiol; 2023 Apr; 60(4):2200-2208. PubMed ID: 36633805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury.
    Funk LH; Hackett AR; Bunge MB; Lee JK
    J Neuroinflammation; 2016 Apr; 13(1):87. PubMed ID: 27098833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition.
    Jones LL; Sajed D; Tuszynski MH
    J Neurosci; 2003 Oct; 23(28):9276-88. PubMed ID: 14561854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.
    Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Tom VJ
    J Neurosci; 2015 Aug; 35(31):11068-80. PubMed ID: 26245968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.