BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35918898)

  • 1. Aligned peptoid-based macrodiscs for structural studies of membrane proteins by oriented-sample NMR.
    Galiakhmetov AR; Davern CM; Esteves RJA; Awosanya EO; Guthrie QAE; Proulx C; Nevzorov AA
    Biophys J; 2022 Sep; 121(17):3263-3270. PubMed ID: 35918898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptoid-based macrodiscs of variable lipid composition for structural studies of membrane proteins by oriented-sample solid-state NMR.
    Galiakhmetov AR; Shah AA; Lane A; Davern CM; Proulx C; Nevzorov AA
    J Struct Biol X; 2024 Jun; 9():100095. PubMed ID: 38094992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrodiscs Comprising SMALPs for Oriented Sample Solid-State NMR Spectroscopy of Membrane Proteins.
    Radoicic J; Park SH; Opella SJ
    Biophys J; 2018 Jul; 115(1):22-25. PubMed ID: 29914645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane proteins in magnetically aligned phospholipid polymer discs for solid-state NMR spectroscopy.
    Park SH; Wu J; Yao Y; Singh C; Tian Y; Marassi FM; Opella SJ
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183333. PubMed ID: 32371072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanodiscs versus macrodiscs for NMR of membrane proteins.
    Park SH; Berkamp S; Cook GA; Chan MK; Viadiu H; Opella SJ
    Biochemistry; 2011 Oct; 50(42):8983-5. PubMed ID: 21936505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning peptoid secondary structure with pentafluoroaromatic functionality: a new design paradigm for the construction of discretely folded peptoid structures.
    Gorske BC; Blackwell HE
    J Am Chem Soc; 2006 Nov; 128(44):14378-87. PubMed ID: 17076512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity enhancement for membrane proteins reconstituted in parallel and perpendicular oriented bicelles obtained by using repetitive cross-polarization and membrane-incorporated free radicals.
    Koroloff SN; Tesch DM; Awosanya EO; Nevzorov AA
    J Biomol NMR; 2017 Feb; 67(2):135-144. PubMed ID: 28205016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering the edge chemistry of bicelles with peptoids.
    Najafi H; Servoss SL
    Chem Phys Lipids; 2018 Dec; 217():43-50. PubMed ID: 30391486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains.
    Wu CW; Kirshenbaum K; Sanborn TJ; Patch JA; Huang K; Dill KA; Zuckermann RN; Barron AE
    J Am Chem Soc; 2003 Nov; 125(44):13525-30. PubMed ID: 14583049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets.
    Tran H; Gael SL; Connolly MD; Zuckermann RN
    J Vis Exp; 2011 Nov; (57):e3373. PubMed ID: 22083233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains.
    Stringer JR; Crapster JA; Guzei IA; Blackwell HE
    J Am Chem Soc; 2011 Oct; 133(39):15559-67. PubMed ID: 21861531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming Amphiphilic Peptoid Oligomers for Hierarchical Assembly and Inorganic Crystallization.
    Cai B; Li Z; Chen CL
    Acc Chem Res; 2021 Jan; 54(1):81-91. PubMed ID: 33136361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconstrained peptoid tetramer exhibits a predominant conformation in aqueous solution.
    Roe LT; Pelton JG; Edison JR; Butterfoss GL; Tresca BW; LaFaye BA; Whitelam S; Wemmer DE; Zuckermann RN
    Biopolymers; 2019 Jun; 110(6):e23267. PubMed ID: 30835821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligo(N-alkoxy glycines): trans substantiating peptoid conformations.
    Jordan PA; Paul B; Butterfoss GL; Renfrew PD; Bonneau R; Kirshenbaum K
    Biopolymers; 2011; 96(5):617-26. PubMed ID: 22180909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Mass Spectrometry Analysis of Oligo-peptoids.
    Ren J; Mann YS; Zhang Y; Browne MD
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential.
    Mukherjee S; Zhou G; Michel C; Voelz VA
    J Phys Chem B; 2015 Dec; 119(50):15407-17. PubMed ID: 26584227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Peptoid Foldamers at Last.
    Laursen JS; Engel-Andreasen J; Olsen CA
    Acc Chem Res; 2015 Oct; 48(10):2696-704. PubMed ID: 26176689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids.
    Jin H; Jiao F; Daily MD; Chen Y; Yan F; Ding YH; Zhang X; Robertson EJ; Baer MD; Chen CL
    Nat Commun; 2016 Jul; 7():12252. PubMed ID: 27402325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'q-Titration' of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy.
    Son WS; Park SH; Nothnagel HJ; Lu GJ; Wang Y; Zhang H; Cook GA; Howell SC; Opella SJ
    J Magn Reson; 2012 Jan; 214(1):111-8. PubMed ID: 22079194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity and helicity of membrane-interactive peptides containing peptoid residues.
    Tang YC; Deber CM
    Biopolymers; 2002 Nov; 65(4):254-62. PubMed ID: 12382286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.