These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35919258)

  • 21. Space-Specific Mixing Excitation for High-SNR Spatial Encoding in Magnetic Particle Imaging.
    Liu Y; Li G; Li J; Tang Z; An Y; Tian J
    IEEE Trans Biomed Eng; 2024 May; PP():. PubMed ID: 38739521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.
    Pantke D; Holle N; Mogarkar A; Straub M; Schulz V
    Med Phys; 2019 Sep; 46(9):4077-4086. PubMed ID: 31183873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relaxation in x-space magnetic particle imaging.
    Croft LR; Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2335-42. PubMed ID: 22968211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low drive field amplitude for improved image resolution in magnetic particle imaging.
    Croft LR; Goodwill PW; Konkle JJ; Arami H; Price DA; Li AX; Saritas EU; Conolly SM
    Med Phys; 2016 Jan; 43(1):424. PubMed ID: 26745935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging.
    Erbe M; Knopp T; Sattel TF; Biederer S; Buzug TM
    Med Phys; 2011 Sep; 38(9):5200-7. PubMed ID: 21978064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.
    Ziemian S; Löwa N; Kosch O; Bajj D; Wiekhorst F; Schütz G
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).
    Du Y; Lai PT; Leung CH; Pong PW
    Int J Mol Sci; 2013 Sep; 14(9):18682-710. PubMed ID: 24030719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A concept for a magnetic particle imaging scanner with Halbach arrays.
    Bakenecker AC; Schumacher J; Blümler P; Gräfe K; Ahlborg M; M Buzug T
    Phys Med Biol; 2020 Sep; 65(19):195014. PubMed ID: 32155606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic particle imaging for artifact-free imaging of intracranial flow diverter stents: A phantom study.
    Herzberg M; Dorn F; Dietrich P; Rückert MA; Kampf T; Bley TA; Behr VC; Herz S; Vogel P
    Phys Med; 2021 Aug; 88():65-70. PubMed ID: 34192659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging.
    Werner F; Gdaniec N; Knopp T
    Phys Med Biol; 2017 May; 62(9):3407-3421. PubMed ID: 28218613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential Scan-Based Single-Dimension Multi-Voxel System Matrix Calibration for Open-Sided Magnetic Particle Imaging.
    He J; Zhang H; Li Y; Li G; Lei S; Qian Z; Xiong F; Feng Y; Zhu T; An Y; Tian J
    IEEE Trans Med Imaging; 2024 May; PP():. PubMed ID: 38781069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MPI System with Bore Sizes of 75 mm and 100 mm Using Permanent Magnets and FMMD Technique.
    Jeong JC; Kim TY; Cho HS; Seo BS; Krause HJ; Hong HB
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First Superferromagnetic Remanence Characterization and Scan Optimization for Super-Resolution Magnetic Particle Imaging.
    Fung KLB; Colson C; Bryan J; Saayujya C; Mokkarala-Lopez J; Hartley A; Yousuf K; Kuo R; Lu Y; Fellows BD; Chandrasekharan P; Conolly SM
    Nano Lett; 2023 Mar; 23(5):1717-1725. PubMed ID: 36821385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning for improving the spatial resolution of magnetic particle imaging.
    Shang Y; Liu J; Zhang L; Wu X; Zhang P; Yin L; Hui H; Tian J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35533677
    [No Abstract]   [Full Text] [Related]  

  • 36. Efficient generation of a magnetic field-free line.
    Knopp T; Erbe M; Biederer S; Sattel TF; Buzug TM
    Med Phys; 2010 Jul; 37(7):3538-40. PubMed ID: 20831060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bimodal intravascular volumetric imaging combining OCT and MPI.
    Latus S; Griese F; Schlüter M; Otte C; Möddel M; Graeser M; Saathoff T; Knopp T; Schlaefer A
    Med Phys; 2019 Mar; 46(3):1371-1383. PubMed ID: 30657597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual imaging agent for magnetic particle imaging and computed tomography.
    Liu S; Heshmat A; Andrew J; Barreto I; Rinaldi-Ramos CM
    Nanoscale Adv; 2023 May; 5(11):3018-3032. PubMed ID: 37260489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.
    Zhao J; Shen Y; Liu X; Hou X; Ding X; An Y; Hui H; Tian J; Zhang H
    Med Phys; 2024 May; ():. PubMed ID: 38700948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.