BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 35919429)

  • 1. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging.
    Zhou WL; Lin W; Chen Y; Liu Y
    Chem Sci; 2022 Jul; 13(27):7976-7989. PubMed ID: 35919429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Purely Organic Room-Temperature Phosphorescence.
    Ma XK; Liu Y
    Acc Chem Res; 2021 Sep; 54(17):3403-3414. PubMed ID: 34403251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent Polymerization-Activated Ultrastrong Near-Infrared Room-Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution.
    Dai XY; Huo M; Dong X; Hu YY; Liu Y
    Adv Mater; 2022 Sep; 34(38):e2203534. PubMed ID: 35771589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly.
    Zheng H; Zhang Z; Cai S; An Z; Huang W
    Adv Mater; 2024 May; 36(18):e2311922. PubMed ID: 38270348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Photon Excited Near-Infrared Phosphorescence Based on Secondary Supramolecular Confinement.
    Ma XK; Zhou X; Wu J; Shen FF; Liu Y
    Adv Sci (Weinh); 2022 Jun; 9(18):e2201182. PubMed ID: 35466559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water.
    Zhou WL; Lin W; Chen Y; Dai XY; Liu Z; Liu Y
    Chem Sci; 2022 Jan; 13(2):573-579. PubMed ID: 35126989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Phosphorescent Switch of Diarylethene Phenylpyridinium Derivative and Cucurbit[8]uril for Cell Imaging.
    Wang C; Liu YH; Liu Y
    Small; 2022 May; 18(21):e2201821. PubMed ID: 35460176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Purely-Organic Room-Temperature Aqueous Phosphorescence via a Two-Component Macromolecular Self-Assembly Strategy.
    Guo W; Wang X; Zhou B; Zhang K
    Chem Asian J; 2020 Nov; 15(21):3469-3474. PubMed ID: 32909394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralong Room-Temperature Phosphorescence with Second-level Lifetime in Water Based on Cyclodextrin Supramolecular Assembly.
    Li D; Liu Z; Fang M; Yang J; Tang BZ; Li Z
    ACS Nano; 2023 Jul; 17(13):12895-12902. PubMed ID: 37382501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Reversible Supramolecular Light Switch for NIR Phosphorescence Resonance Energy Transfer.
    Wang C; Ma XK; Guo P; Jiang C; Liu YH; Liu G; Xu X; Liu Y
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103041. PubMed ID: 34738729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorescent acyclic cucurbituril solid supramolecular multicolour delayed fluorescence behaviour.
    Huo M; Song SQ; Dai XY; Li FF; Hu YY; Liu Y
    Chem Sci; 2024 Apr; 15(14):5163-5173. PubMed ID: 38577356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution.
    Dai XY; Hu YY; Sun Y; Huo M; Dong X; Liu Y
    Adv Sci (Weinh); 2022 May; 9(14):e2200524. PubMed ID: 35285166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents.
    Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z
    Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purely organic light-harvesting phosphorescence energy transfer by β-cyclodextrin pseudorotaxane for mitochondria targeted imaging.
    Shen FF; Chen Y; Dai X; Zhang HY; Zhang B; Liu Y; Liu Y
    Chem Sci; 2020 Dec; 12(5):1851-1857. PubMed ID: 34163949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Soluble Luminescent Polymers with Room-Temperature Phosphorescence Based on the α-Amino Acids.
    Sheng C; Gao X; Ding Y; Guo M
    Macromol Rapid Commun; 2024 May; ():e2400201. PubMed ID: 38747029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncommon Supramolecular Phosphorescence-Capturing Assembly Based on Cucurbit[8]uril-Mediated Molecular Folding for Near-Infrared Lysosome Imaging.
    Huo M; Dai XY; Liu Y
    Small; 2022 Jan; 18(1):e2104514. PubMed ID: 34741495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible-Light-Excited Room-Temperature Phosphorescence in Water by Cucurbit[8]uril-Mediated Supramolecular Assembly.
    Wang J; Huang Z; Ma X; Tian H
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):9928-9933. PubMed ID: 31799773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials.
    Li J; Wu Y; Gong X
    Chem Sci; 2023 Apr; 14(14):3705-3729. PubMed ID: 37035697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metastable Supramolecular Assembly of Simple Monomers Enabled by Confinement: Towards Aqueous Phase Room Temperature Phosphorescence.
    Wang R; Ma D; Kong X; Peng F; Cao X; Zhao Y; Lu C; Shi W
    Angew Chem Int Ed Engl; 2024 Jun; ():e202409162. PubMed ID: 38860443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature phosphorescence from organic materials in aqueous media.
    Panda SK; De A; Banerjee S
    Photochem Photobiol; 2024 Jun; ():. PubMed ID: 38837372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.