These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35919593)
1. Tailor-designed nanowire-structured iron and nickel oxides on platinum catalyst for formic acid electro-oxidation. Al-Qodami BA; Alalawy HH; Sayed SY; Al-Akraa IM; Allam NK; Mohammad AM RSC Adv; 2022 Jul; 12(31):20395-20402. PubMed ID: 35919593 [TBL] [Abstract][Full Text] [Related]
2. Boosted formic acid electro-oxidation on platinum nanoparticles and "mixed-valence" iron and nickel oxides. Al-Qodami BA; Sayed SY; Alalawy HH; Al-Akraa IM; Allam NK; Mohammad AM RSC Adv; 2023 Jul; 13(30):20799-20809. PubMed ID: 37441028 [TBL] [Abstract][Full Text] [Related]
3. A hybrid FeOx/CoOx/Pt ternary nanocatalyst for augmented catalysis of formic acid electro-oxidation. Mohammad AM; Al-Qodami BA; Al-Akraa IM; Allam NK; Alalawy HH Sci Rep; 2024 Aug; 14(1):18048. PubMed ID: 39103413 [TBL] [Abstract][Full Text] [Related]
4. In-situ Bi-modified Pt towards glycerol and formic acid electro-oxidation: Effects of catalyst structure and surface microenvironment on activity and selectivity. Ning X; Zhan L; Zhou X; Luo J; Wang Y J Colloid Interface Sci; 2024 Feb; 655():920-930. PubMed ID: 37979297 [TBL] [Abstract][Full Text] [Related]
5. In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Zhang Y; Qiao M; Huang Y; Zou Y; Liu Z; Tao L; Li Y; Dong CL; Wang S Research (Wash D C); 2020; 2020():5487237. PubMed ID: 32266330 [TBL] [Abstract][Full Text] [Related]
6. Propitious Dendritic Cu El-Nagar GA; Mohammad AM; El-Deab MS; El-Anadouli BE ACS Appl Mater Interfaces; 2017 Jun; 9(23):19766-19772. PubMed ID: 28530403 [TBL] [Abstract][Full Text] [Related]
7. CO tolerance of Pt/FeO Liu L; Zhou F; Kodiyath R; Ueda S; Abe H; Wang D; Deng Y; Ye J Phys Chem Chem Phys; 2016 Oct; 18(42):29607-29615. PubMed ID: 27752660 [TBL] [Abstract][Full Text] [Related]
8. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis. Hu X; Xiao Z; Wang W; Bu L; An Z; Liu S; Pao CW; Zhan C; Hu Z; Yang Z; Wang Y; Huang X J Am Chem Soc; 2023 Jul; 145(28):15109-15117. PubMed ID: 37289521 [TBL] [Abstract][Full Text] [Related]
9. Highly Selective Synthesis of Monoclinic-Phased Platinum-Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis. Dong C; Wang X; Zhu Z; Zhan C; Lin X; Bu L; Ye J; Wang Y; Liu W; Huang X J Am Chem Soc; 2023 Jul; 145(28):15393-15404. PubMed ID: 37429024 [TBL] [Abstract][Full Text] [Related]
10. Sub-Monolayer SbO Hu X; An Z; Wang W; Lin X; Chan TS; Zhan C; Hu Z; Yang Z; Huang X; Bu L J Am Chem Soc; 2023 Sep; 145(35):19274-19282. PubMed ID: 37585588 [TBL] [Abstract][Full Text] [Related]
11. Interface-Confined FeO Xu X; Fu Q; Gan L; Zhu J; Bao X J Phys Chem B; 2018 Jan; 122(2):984-990. PubMed ID: 28914538 [TBL] [Abstract][Full Text] [Related]
12. Electronic modification effects induced by Fe in Pt-Ru-Fe ternary catalyst on the electrooxidation of CO/H₂ and methanol. Kim T; Kobayashi K; Take T; Nagai M J Oleo Sci; 2012; 61(3):127-34. PubMed ID: 22362143 [TBL] [Abstract][Full Text] [Related]
13. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold. Muralidharan R; McIntosh M; Li X Phys Chem Chem Phys; 2013 Jun; 15(24):9716-25. PubMed ID: 23674096 [TBL] [Abstract][Full Text] [Related]
14. Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid. Nacys A; Simkunaitė D; Balciunaite A; Zabielaite A; Upskuviene D; Levinas R; Jasulaitiene V; Kovalevskij V; Simkunaite-Stanyniene B; Tamasauskaite-Tamasiunaite L; Norkus E Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834564 [TBL] [Abstract][Full Text] [Related]
15. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Qin C; Fan A; Zhang X; Dai X; Sun H; Ren D; Dong Z; Wang Y; Luan C; Ye JY; Sun SG Nanoscale; 2019 May; 11(18):9061-9075. PubMed ID: 31025672 [TBL] [Abstract][Full Text] [Related]
16. Heterostructured Pt-PbS Nanobelt Achieves Remarkable Direct Formic Acid Oxidation Catalysis. Liu L; Jin L; Xiao Z; Fang N; Lin X; Ji Y; Wang Y; Li Y; Huang X; Bu L Nano Lett; 2024 Jul; 24(26):8162-8170. PubMed ID: 38904300 [TBL] [Abstract][Full Text] [Related]
17. A Biphasic Strategy to Synergistically Accelerate Activation and CO Spillover in Formic Acid Oxidation Catalysis. Zhan C; Sun H; Yan W; Xia J; Meng XM; Li T; Bu L; Kong Q; Lin H; Liu W; Huang X; Chen N Nano Lett; 2024 Jul; 24(26):8134-8142. PubMed ID: 38900138 [TBL] [Abstract][Full Text] [Related]
18. CO-Reductive and O Bhalothia D; Huang TH; Chou PH; Chen PC; Wang KW; Chen TY Sci Rep; 2020 May; 10(1):8457. PubMed ID: 32439867 [TBL] [Abstract][Full Text] [Related]
19. Direct Synthesis of Ultrathin Pt Nanowire Arrays as Catalysts for Methanol Oxidation. Li H; Wu X; Tao X; Lu Y; Wang Y Small; 2020 Aug; 16(33):e2001135. PubMed ID: 32583966 [TBL] [Abstract][Full Text] [Related]
20. Sarcosine Prostate Cancer Biomarker Detection by Controlling Oxygen in NiO Roy A; Chen YP; Qiu JT; Maikap S Anal Chem; 2020 Jun; 92(12):8064-8071. PubMed ID: 32401013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]