These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35919598)
1. Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries. Singh JP; Paidi AK; Chae KH; Lee S; Ahn D RSC Adv; 2022 Jul; 12(31):20360-20378. PubMed ID: 35919598 [TBL] [Abstract][Full Text] [Related]
2. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. Croy JR; Balasubramanian M; Gallagher KG; Burrell AK Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674 [TBL] [Abstract][Full Text] [Related]
3. Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. Qian G; Wang J; Li H; Ma ZF; Pianetta P; Li L; Yu X; Liu Y Natl Sci Rev; 2022 Feb; 9(2):nwab146. PubMed ID: 35145703 [TBL] [Abstract][Full Text] [Related]
4. In situ electrochemical synchrotron radiation for Li-ion batteries. Alemu T; Wang FM J Synchrotron Radiat; 2018 Jan; 25(Pt 1):151-165. PubMed ID: 29271765 [TBL] [Abstract][Full Text] [Related]
5. Novel Low-Strain Layered/Rocksalt Intergrown Cathode for High-Energy Li-Ion Batteries. Xu L; Chen S; Su Y; Shen X; He J; Avdeev M; Kan WH; Zhang B; Fan W; Chen L; Cao D; Lu Y; Wang L; Wang M; Bao L; Zhang L; Li N; Wu F ACS Appl Mater Interfaces; 2023 Nov; 15(47):54559-54567. PubMed ID: 37972385 [TBL] [Abstract][Full Text] [Related]
6. Insights into Layered Oxide Cathodes for Rechargeable Batteries. Yang JH; Kim H; Ceder G Molecules; 2021 May; 26(11):. PubMed ID: 34073268 [TBL] [Abstract][Full Text] [Related]
7. Gaining More Insights from Synchrotron-Based X-ray Spectroscopy for Alkali Ion Rechargeable Batteries. Chen S; Jiao S; Liang Q; Li P; Yin J; Li Q; Yu X; Li Q Anal Chem; 2024 May; 96(20):8021-8035. PubMed ID: 38659100 [TBL] [Abstract][Full Text] [Related]
8. Probing Distinctive Redox Mechanism in Ni-Rich Cathode Via Real-Time Quick X-Ray Absorption Spectroscopy. Ma L; Wang L; Liu T; Wu T; Lu J Small Methods; 2023 Jan; 7(1):e2201173. PubMed ID: 36446636 [TBL] [Abstract][Full Text] [Related]
9. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. Hu E; Wang X; Yu X; Yang XQ Acc Chem Res; 2018 Feb; 51(2):290-298. PubMed ID: 29350034 [TBL] [Abstract][Full Text] [Related]
10. Nano-rods in Ni-rich layered cathodes for practical batteries. Park GT; Park NY; Ryu HH; Sun HH; Hwang JY; Sun YK Chem Soc Rev; 2024 Nov; 53(23):11462-11518. PubMed ID: 39380343 [TBL] [Abstract][Full Text] [Related]
11. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Lin F; Liu Y; Yu X; Cheng L; Singer A; Shpyrko OG; Xin HL; Tamura N; Tian C; Weng TC; Yang XQ; Meng YS; Nordlund D; Yang W; Doeff MM Chem Rev; 2017 Nov; 117(21):13123-13186. PubMed ID: 28960962 [TBL] [Abstract][Full Text] [Related]
12. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Fu C; Li G; Luo D; Li Q; Fan J; Li L ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668 [TBL] [Abstract][Full Text] [Related]
13. Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Feng J; Chen Z; Zhou W; Hao Z Mater Horiz; 2023 Oct; 10(11):4686-4709. PubMed ID: 37593917 [TBL] [Abstract][Full Text] [Related]
14. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Zheng J; Ye Y; Liu T; Xiao Y; Wang C; Wang F; Pan F Acc Chem Res; 2019 Aug; 52(8):2201-2209. PubMed ID: 31180201 [TBL] [Abstract][Full Text] [Related]
15. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
16. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Xu C; Märker K; Lee J; Mahadevegowda A; Reeves PJ; Day SJ; Groh MF; Emge SP; Ducati C; Layla Mehdi B; Tang CC; Grey CP Nat Mater; 2021 Jan; 20(1):84-92. PubMed ID: 32839589 [TBL] [Abstract][Full Text] [Related]
17. Correlating Rate-Dependent Transition Metal Dissolution between Structure Degradation in Li-Rich Layered Oxides. Cao B; Li T; Zhao W; Yin L; Cao H; Chen D; Li L; Pan F; Zhang M Small; 2023 Oct; 19(42):e2301834. PubMed ID: 37340579 [TBL] [Abstract][Full Text] [Related]
18. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries. Zhao M; Peng HJ; Li BQ; Huang JQ Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810 [TBL] [Abstract][Full Text] [Related]
19. Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Xiao Y; Zhu YF; Xiang W; Wu ZG; Li YC; Lai J; Li S; Wang E; Yang ZG; Xu CL; Zhong BH; Guo XD Angew Chem Int Ed Engl; 2020 Jan; 59(4):1491-1495. PubMed ID: 31677318 [TBL] [Abstract][Full Text] [Related]
20. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]