These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35919713)

  • 1. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display.
    Zheng M; Haeffner F; Gao J
    Chem Sci; 2022 Jul; 13(28):8349-8354. PubMed ID: 35919713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile strategy for the construction of a phage display cyclic peptide library for the selection of functional macrocycles.
    Xiang H; Bai L; Zhang X; Dan T; Cheng P; Yang X; Ai H; Li K; Lei X
    Chem Sci; 2024 Jul; 15(30):11847-11855. PubMed ID: 39092106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cysteine-Directed Proximity-Driven Crosslinking Method for Native Peptide Bicyclization.
    Chen FJ; Pinnette N; Yang F; Gao J
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306813. PubMed ID: 37285100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Wang XS; Chen PC; Hampton JT; Tharp JM; Reed CA; Das SK; Wang DS; Hayatshahi HS; Shen Y; Liu J; Liu WR
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15904-15909. PubMed ID: 31398275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display.
    Oppewal TR; Jansen ID; Hekelaar J; Mayer C
    J Am Chem Soc; 2022 Mar; 144(8):3644-3652. PubMed ID: 35171585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Nonnatural Cysteine-Cross-Linked Phage Libraries.
    Chau B; Liivak K; Gao J
    Methods Mol Biol; 2024; 2738():317-332. PubMed ID: 37966607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides.
    Gu Y; Iannuzzelli JA; Fasan R
    Methods Mol Biol; 2022; 2371():261-286. PubMed ID: 34596853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of Peptide-Bismuth Bicycles Using Phage Display.
    He RN; Zhang MJ; Dai B; Kong XD
    ACS Chem Biol; 2024 May; 19(5):1040-1044. PubMed ID: 38620022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Construction of a Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Chen PC; Liu WR
    Methods Mol Biol; 2021; 2355():219-230. PubMed ID: 34386961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for the Construction of Multicyclic Phage Display Libraries.
    Chen FJ; Pinnette N; Gao J
    Chembiochem; 2024 May; 25(9):e202400072. PubMed ID: 38466139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K; Kong XD; Heinis C
    Acc Chem Res; 2017 Aug; 50(8):1866-1874. PubMed ID: 28719188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery.
    Zhang YN; Wan XC; Tang Y; Chen Y; Zheng FH; Cui ZH; Zhang H; Zhou Z; Fang GM
    Chem Sci; 2024 Jun; 15(25):9649-9656. PubMed ID: 38939140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N, S-Double Labeling of N-Terminal Cysteines via an Alternative Conjugation Pathway with 2-Cyanobenzothiazole.
    Wang W; Gao J
    J Org Chem; 2020 Feb; 85(3):1756-1763. PubMed ID: 31880156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display.
    Wan XC; Zhang YN; Zhang H; Chen Y; Cui ZH; Zhu WJ; Fang GM
    Org Lett; 2024 Apr; 26(13):2601-2605. PubMed ID: 38529932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone-Cyclized Peptides: A Critical Review.
    Rubin SJS; Qvit N
    Curr Top Med Chem; 2018; 18(7):526-555. PubMed ID: 29773062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity-driven site-specific cyclization of phage-displayed peptides.
    Brown L; Vidal AV; Dias AL; Rodrigues T; Sigurdardottir A; Journeaux T; O'Brien S; Murray TV; Ravn P; Papworth M; Bernardes GJL
    Nat Commun; 2024 Aug; 15(1):7308. PubMed ID: 39181880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Binding Affinity of in-Vitro-Evolved Cyclic Peptides by Inserting Atoms into the Macrocycle Backbone.
    Wilbs J; Middendorp SJ; Heinis C
    Chembiochem; 2016 Dec; 17(24):2299-2303. PubMed ID: 27862752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities.
    Giebel LB; Cass RT; Milligan DL; Young DC; Arze R; Johnson CR
    Biochemistry; 1995 Nov; 34(47):15430-5. PubMed ID: 7492543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic Strategies for Macrocyclic Peptides.
    Wang W; Khojasteh SC; Su D
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homodimeric peptides displayed by the major coat protein of filamentous phage.
    Zwick MB; Shen J; Scott JK
    J Mol Biol; 2000 Jul; 300(2):307-20. PubMed ID: 10873467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.