These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35919813)
1. The value of quantitative magnetic resonance imaging signal intensity in distinguishing between spinal meningiomas and schwannomas. Hung ND; Dung LT; Huyen DK; Duy NQ; He DV; Duc NM Int J Med Sci; 2022; 19(7):1110-1117. PubMed ID: 35919813 [No Abstract] [Full Text] [Related]
2. Differentiation of the Intradural Extramedullary Spinal Tumors, Schwannomas, and Meningiomas Utilizing the Contrast Ratio as a Quantitative Magnetic Resonance Imaging Method. Nakamae T; Kamei N; Tamura T; Maruyama T; Nakao K; Farid F; Fukui H; Adachi N World Neurosurg; 2024 Aug; 188():e320-e325. PubMed ID: 38797281 [TBL] [Abstract][Full Text] [Related]
3. Differentiating spinal intradural-extramedullary schwannoma from meningioma using MRI T Takashima H; Takebayashi T; Yoshimoto M; Onodera M; Terashima Y; Iesato N; Tanimoto K; Ogon I; Morita T; Yamashita T Br J Radiol; 2018 Dec; 91(1092):20180262. PubMed ID: 30052467 [TBL] [Abstract][Full Text] [Related]
4. MR imaging features of spinal schwannomas and meningiomas. De Verdelhan O; Haegelen C; Carsin-Nicol B; Riffaud L; Amlashi SF; Brassier G; Carsin M; Morandi X J Neuroradiol; 2005 Jan; 32(1):42-9. PubMed ID: 15798613 [TBL] [Abstract][Full Text] [Related]
5. Arachnoid isolation sign: A predictive imaging feature of spinal meningioma on CT-myelogram. Anno M; Hara N; Yamazaki T Clin Neurol Neurosurg; 2018 May; 168():124-126. PubMed ID: 29549812 [TBL] [Abstract][Full Text] [Related]
6. MR diffusion and dynamic-contrast enhanced imaging to distinguish meningioma, paraganglioma, and schwannoma in the cerebellopontine angle and jugular foramen. Ota Y; Liao E; Capizzano AA; Yokota H; Baba A; Kurokawa R; Kurokawa M; Moritani T; Yoshii K; Srinivasan A J Neuroimaging; 2022 May; 32(3):502-510. PubMed ID: 34936708 [TBL] [Abstract][Full Text] [Related]
7. Precise discrimination between meningiomas and schwannomas using time-to-signal intensity curves and percentage signal recoveries obtained from dynamic susceptibility perfusion imaging. Cebeci H; Kilincer A; Duran Hİ; Seher N; Şahinoğlu M; Karabağlı H; Karabağlı P; Paksoy Y J Neuroradiol; 2021 May; 48(3):157-163. PubMed ID: 33065198 [TBL] [Abstract][Full Text] [Related]
8. Radiological findings of spinal schwannomas and meningiomas: focus on discrimination of two disease entities. Liu WC; Choi G; Lee SH; Han H; Lee JY; Jeon YH; Park HS; Park JY; Paeng SS Eur Radiol; 2009 Nov; 19(11):2707-15. PubMed ID: 19504105 [TBL] [Abstract][Full Text] [Related]
9. Prediction of hard meningiomas: quantitative evaluation based on the magnetic resonance signal intensity. Watanabe K; Kakeda S; Yamamoto J; Ide S; Ohnari N; Nishizawa S; Korogi Y Acta Radiol; 2016 Mar; 57(3):333-40. PubMed ID: 25824207 [TBL] [Abstract][Full Text] [Related]
10. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma. Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468 [TBL] [Abstract][Full Text] [Related]
11. Preliminary algorithm for differential diagnosis between spinal meningioma and schwannoma using plain magnetic resonance imaging. Iwata E; Shigematsu H; Yamamoto Y; Kawasaki S; Tanaka M; Okuda A; Morimoto Y; Masuda K; Koizumi M; Akahane M; Tanaka Y J Orthop Sci; 2018 Mar; 23(2):408-413. PubMed ID: 29198491 [TBL] [Abstract][Full Text] [Related]
12. Differentiation between intraspinal schwannoma and meningioma by MR characteristics and clinic features. Zhai X; Zhou M; Chen H; Tang Q; Cui Z; Yao Y; Yin Q Radiol Med; 2019 Jun; 124(6):510-521. PubMed ID: 30684254 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance imaging-based prediction models for differentiating intraspinal schwannomas from meningiomas: classification and regression tree and random forest analysis. Xu Z; Wang YH; Wang YL; Feng YZ; Ye JS; Cheng ZY; Cai XR Quant Imaging Med Surg; 2024 May; 14(5):3628-3642. PubMed ID: 38720862 [TBL] [Abstract][Full Text] [Related]
14. Combined radiomics nomogram of different machine learning models for preoperative distinguishing intraspinal schwannomas and meningiomas: a multicenter and comparative study. Xu Z; Wang YH; Cheng ZY; Feng YZ; Li XC; Zhou Q; Cai XR Clin Radiol; 2024 Sep; 79(9):e1108-e1116. PubMed ID: 38849236 [TBL] [Abstract][Full Text] [Related]
15. MR imaging of intraspinal tumors--capability in histological differentiation and compartmentalization of extramedullary tumors. Takemoto K; Matsumura Y; Hashimoto H; Inoue Y; Fukuda T; Shakudo M; Nemoto Y; Onoyama Y; Yasui T; Hakuba A Neuroradiology; 1988; 30(4):303-9. PubMed ID: 3173671 [TBL] [Abstract][Full Text] [Related]
16. Differentiating between spinal schwannomas and meningiomas using MRI: A focus on cystic change. Lee JH; Kim HS; Yoon YC; Cha MJ; Lee SH; Kim ES PLoS One; 2020; 15(5):e0233623. PubMed ID: 32469953 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Resonance Fingerprinting for Preoperative Meningioma Consistency Prediction. Bai Y; Zhang R; Zhang X; Wang X; Nittka M; Koerzdoerfer G; Gong Q; Wang M Acad Radiol; 2022 Aug; 29(8):e157-e165. PubMed ID: 34750066 [TBL] [Abstract][Full Text] [Related]
18. Automated Detection and Diagnosis of Spinal Schwannomas and Meningiomas Using Deep Learning and Magnetic Resonance Imaging. Ito S; Nakashima H; Segi N; Ouchida J; Oda M; Yamauchi I; Oishi R; Miyairi Y; Mori K; Imagama S J Clin Med; 2023 Aug; 12(15):. PubMed ID: 37568477 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Chemical Exchange Saturation Transfer Imaging of Amide Proton Transfer Differentiates between Cerebellopontine Angle Schwannoma and Meningioma: Preliminary Results. Koike H; Morikawa M; Ishimaru H; Ideguchi R; Uetani M; Hiu T; Matsuo T; Miyoshi M Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077581 [TBL] [Abstract][Full Text] [Related]
20. Dynamic susceptibility contrast and dynamic contrast-enhanced MRI characteristics to distinguish microcystic meningiomas from traditional Grade I meningiomas and high-grade gliomas. Hussain NS; Moisi MD; Keogh B; McCullough BJ; Rostad S; Newell D; Gwinn R; Foltz G; Mayberg M; Aguedan B; Good V; Fouke SJ J Neurosurg; 2017 Apr; 126(4):1220-1226. PubMed ID: 27285539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]