BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35919998)

  • 1. Evolution of thermal tolerance and phenotypic plasticity under rapid and slow temperature fluctuations.
    Schaum CE; Buckling A; Smirnoff N; Yvon-Durocher G
    Proc Biol Sci; 2022 Aug; 289(1980):20220834. PubMed ID: 35919998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom.
    Schaum CE; Buckling A; Smirnoff N; Studholme DJ; Yvon-Durocher G
    Nat Commun; 2018 Apr; 9(1):1719. PubMed ID: 29712900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs.
    O'Donnell DR; Hamman CR; Johnson EC; Kremer CT; Klausmeier CA; Litchman E
    Glob Chang Biol; 2018 Oct; 24(10):4554-4565. PubMed ID: 29940071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming.
    Bishop IW; Anderson SI; Collins S; Rynearson TA
    Glob Chang Biol; 2022 Oct; 28(19):5755-5767. PubMed ID: 35785458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming.
    Barton S; Padfield D; Masterson A; Buckling A; Smirnoff N; Yvon-Durocher G
    Glob Chang Biol; 2023 Sep; 29(18):5261-5275. PubMed ID: 37395481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift.
    Leonard AM; Lancaster LT
    BMC Evol Biol; 2020 Apr; 20(1):47. PubMed ID: 32326878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton.
    Schaum CE; Rost B; Collins S
    ISME J; 2016 Jan; 10(1):75-84. PubMed ID: 26125683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictability of thermal fluctuations influences functional traits of a cosmopolitan marine diatom.
    Gill RL; Collins S; Argyle PA; Larsson ME; Fleck R; Doblin MA
    Proc Biol Sci; 2022 Apr; 289(1973):20212581. PubMed ID: 35473374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.
    Manenti T; Loeschcke V; Moghadam NN; Sørensen JG
    J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative relationship between thermal tolerance and plasticity in tolerance emerges during experimental evolution in a widespread marine invertebrate.
    Sasaki MC; Dam HG
    Evol Appl; 2021 Aug; 14(8):2114-2123. PubMed ID: 34429752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoplankton biodiversity is more important for ecosystem functioning in highly variable thermal environments.
    Bestion E; Haegeman B; Alvarez Codesal S; Garreau A; Huet M; Barton S; Montoya JM
    Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34446547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures.
    Ketola T; Saarinen K
    J Evol Biol; 2015 Apr; 28(4):800-6. PubMed ID: 25704064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod.
    Sasaki MC; Dam HG
    Glob Chang Biol; 2019 Dec; 25(12):4147-4164. PubMed ID: 31449341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoplankton competition and resilience under fluctuating temperature.
    Siegel P; Baker KG; Low-Décarie E; Geider RJ
    Ecol Evol; 2023 Mar; 13(3):e9851. PubMed ID: 36950368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.
    Magozzi S; Calosi P
    Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-trait analysis reveals large interspecific differences for phytoplankton in response to thermal change.
    Ye M; Xiao M; Zhang S; Huang J; Lin J; Lu Y; Liang S; Zhao J; Dai X; Xu L; Li M; Zhou Y; Overmans S; Xia J; Jin P
    Mar Environ Res; 2023 Jun; 188():106008. PubMed ID: 37121174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast adaptation of tropical diatoms to increased warming with trade-offs.
    Jin P; Agustí S
    Sci Rep; 2018 Dec; 8(1):17771. PubMed ID: 30538260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evolution of phytoplankton fatty acid thermal reaction norms.
    O'Donnell DR; Du ZY; Litchman E
    Evol Appl; 2019 Jun; 12(6):1201-1211. PubMed ID: 31768190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?
    Ortega-Mayagoitia E; Hernández-Martínez O; Ciros-Pérez J
    PLoS One; 2018; 13(4):e0196496. PubMed ID: 29708999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean.
    Anderson SI; Fronda C; Barton AD; Clayton S; Rynearson TA; Dutkiewicz S
    Glob Chang Biol; 2024 Jan; 30(1):e17093. PubMed ID: 38273480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.