BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35920072)

  • 1. Lysine-Tethered Stable Bicyclic Cationic Antimicrobial Peptide Combats Bacterial Infection in Vivo.
    He T; Xu L; Hu Y; Tang X; Qu R; Zhao X; Bai H; Li L; Chen W; Luo G; Fu G; Wang W; Xia X; Zhang J
    J Med Chem; 2022 Aug; 65(15):10523-10533. PubMed ID: 35920072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Stapling by Lysine Tethering Provides Stable and Low Hemolytic Cationic Antimicrobial Peptides.
    Li H; Hu Y; Pu Q; He T; Zhang Q; Wu W; Xia X; Zhang J
    J Med Chem; 2020 Apr; 63(8):4081-4089. PubMed ID: 32216308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine-homologue substitution: Impact on antimicrobial activity and proteolytic stability of cationic stapled heptapeptides.
    Tran DVH; Luong HX; Kim DH; Lee BJ; Kim YW
    Bioorg Med Chem; 2024 May; 106():117735. PubMed ID: 38714021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine Stapling Screening Provides Stable and Low Toxic Cationic Antimicrobial Peptides Combating Multidrug-Resistant Bacteria
    Hu Y; Li H; Qu R; He T; Tang X; Chen W; Li L; Bai H; Li C; Wang W; Fu G; Luo G; Xia X; Zhang J
    J Med Chem; 2022 Jan; 65(1):579-591. PubMed ID: 34968054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria.
    Xie J; Zhao Q; Li S; Yan Z; Li J; Li Y; Mou L; Zhang B; Yang W; Miao X; Jiang X; Wang R
    Chem Biol Drug Des; 2017 Nov; 90(5):690-702. PubMed ID: 28371431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides.
    Wani NA; Stolovicki E; Hur DB; Shai Y
    J Med Chem; 2022 Mar; 65(6):5085-5094. PubMed ID: 35290038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides for combating drug-resistant bacterial infections.
    Xuan J; Feng W; Wang J; Wang R; Zhang B; Bo L; Chen ZS; Yang H; Sun L
    Drug Resist Updat; 2023 May; 68():100954. PubMed ID: 36905712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
    He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J
    Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections.
    Shi J; Chen C; Wang D; Wang Z; Liu Y
    Commun Biol; 2022 Sep; 5(1):926. PubMed ID: 36071151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategic modification of low-activity natural antimicrobial peptides confers antibacterial potential in vitro and in vivo.
    Hazam PK; Cheng CC; Lin WC; Hsieh CY; Hsu PH; Chen YR; Li CC; Hsueh PR; Chen JY
    Eur J Med Chem; 2023 Mar; 249():115131. PubMed ID: 36669399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of number of lysine motifs on the bactericidal and hemolytic activity of short cationic antimicrobial peptides.
    Wu Y; He Q; Che X; Liu F; Lu J; Kong X
    Biochem Biophys Res Commun; 2023 Mar; 648():66-71. PubMed ID: 36736093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections.
    Li G; Lai Z; Shan A
    Adv Sci (Weinh); 2023 Apr; 10(11):e2206602. PubMed ID: 36722732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Butelase 1-Mediated Enzymatic Cyclization of Antimicrobial Peptides: Improvements on Stability and Bioactivity.
    Zhao J; Ge G; Huang Y; Hou Y; Hu SQ
    J Agric Food Chem; 2022 Dec; 70(50):15869-15878. PubMed ID: 36471508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptide PMAP-37 analogs: Increasing the positive charge to enhance the antibacterial activity of PMAP-37.
    Zhou J; Chen L; Liu Y; Shen T; Zhang C; Liu Z; Feng X; Wang C
    J Pept Sci; 2019 Dec; 25(12):e3220. PubMed ID: 31858653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses.
    Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J
    Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptin NLS2 homodimerization strategy for improved antibacterial activity and bio-stability.
    Kumari A; Singh M; Sharma R; Kumar T; Jindal N; Maan S; Joshi VG
    Amino Acids; 2023 Oct; 55(10):1405-1416. PubMed ID: 37725185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides.
    Luong HX; Kim DH; Lee BJ; Kim YW
    Arch Pharm Res; 2018 Nov; 41(11):1092-1097. PubMed ID: 30361948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel antimicrobial peptides modified with fluorinated sulfono-γ-AA having high stability and targeting multidrug-resistant bacteria infections.
    Guo X; Miao X; An Y; Yan T; Jia Y; Deng B; Cai J; Yang W; Sun W; Wang R; Xie J
    Eur J Med Chem; 2024 Jan; 264():116001. PubMed ID: 38056301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Potent Antibacterial Organometallic Peptide Conjugates.
    Albada B; Metzler-Nolte N
    Acc Chem Res; 2017 Oct; 50(10):2510-2518. PubMed ID: 28953347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.