BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35920209)

  • 1. Lateral transition-metal dichalcogenide heterostructures for high efficiency thermoelectric devices.
    Bharadwaj S; Ramasubramaniam A; Ram-Mohan LR
    Nanoscale; 2022 Aug; 14(32):11750-11759. PubMed ID: 35920209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved thermoelectric properties of WS
    Han D; Yang X; Du M; Xin G; Zhang J; Wang X; Cheng L
    Nanoscale; 2021 Apr; 13(15):7176-7192. PubMed ID: 33889870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric properties of SnSe
    Li G; Ding G; Gao G
    J Phys Condens Matter; 2017 Jan; 29(1):015001. PubMed ID: 27831931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Thermoelectric Properties of the MoSe
    Song J; Sun M
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3325-3333. PubMed ID: 38190725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of Minimized Lattice Thermal Conductivity and Enhanced Thermoelectric Performance in WS
    Hu Y; Yang T; Li D; Ding G; Dun C; Wu D; Wang X
    ACS Omega; 2021 Mar; 6(11):7879-7886. PubMed ID: 33778299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit.
    Ding G; Gao GY; Huang Z; Zhang W; Yao K
    Nanotechnology; 2016 Sep; 27(37):375703. PubMed ID: 27487270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures.
    Price CC; Frey NC; Jariwala D; Shenoy VB
    ACS Nano; 2019 Jul; 13(7):8303-8311. PubMed ID: 31241897
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Kumari S; Kumar S; Pratap S; Kubakaddi SS
    J Phys Condens Matter; 2024 May; 36(31):. PubMed ID: 38653314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Symmetry Breaking in Twisted MoS
    Xiong H; Nie X; Zhao L; Deng S
    ACS Appl Mater Interfaces; 2024 May; 16(19):25124-25135. PubMed ID: 38709893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides.
    Wickramaratne D; Zahid F; Lake RK
    J Chem Phys; 2014 Mar; 140(12):124710. PubMed ID: 24697473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong interfacial interactions induced a large reduction in lateral thermal conductivity of transition-metal dichalcogenide superlattices.
    Zhang W; Yang JY; Liu L
    RSC Adv; 2019 Jan; 9(3):1387-1393. PubMed ID: 35518039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.
    Hu X; Kou L; Sun L
    Sci Rep; 2016 Aug; 6():31122. PubMed ID: 27528196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayer Lateral Heterostructures of Transition-Metal Dichalcogenides and Their Optoelectronic Response.
    Sahoo PK; Memaran S; Nugera FA; Xin Y; Díaz Márquez T; Lu Z; Zheng W; Zhigadlo ND; Smirnov D; Balicas L; Gutiérrez HR
    ACS Nano; 2019 Nov; 13(11):12372-12384. PubMed ID: 31532628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxial Single-Crystal Growth of Transition Metal Dichalcogenide Monolayers via the Atomic Sawtooth Au Surface.
    Choi SH; Kim HJ; Song B; Kim YI; Han G; Nguyen HTT; Ko H; Boandoh S; Choi JH; Oh CS; Cho HJ; Jin JW; Won YS; Lee BH; Yun SJ; Shin BG; Jeong HY; Kim YM; Han YK; Lee YH; Kim SM; Kim KK
    Adv Mater; 2021 Apr; 33(15):e2006601. PubMed ID: 33694212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excellent thermoelectric performance induced by interface effect in MoS
    Jia PZ; Zeng YJ; Wu D; Pan H; Cao XH; Zhou WX; Xie ZX; Zhang JX; Chen KQ
    J Phys Condens Matter; 2020 Jan; 32(5):055302. PubMed ID: 31600739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures.
    Liang SJ; Liu B; Hu W; Zhou K; Ang LK
    Sci Rep; 2017 Apr; 7():46211. PubMed ID: 28387363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles calculations of thermal transport properties in MoS
    Ma JJ; Zheng JJ; Zhu XL; Liu PF; Li WD; Wang BT
    Phys Chem Chem Phys; 2019 May; 21(20):10442-10448. PubMed ID: 31066395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS
    Bera J; Sahu S
    RSC Adv; 2019 Aug; 9(43):25216-25224. PubMed ID: 35528640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.