These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35920302)
41. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols. Rösch C; Wissenbach DK; Franck U; Wendisch M; Schlink U Environ Pollut; 2017 Jul; 226():463-472. PubMed ID: 28456415 [TBL] [Abstract][Full Text] [Related]
42. Particle and bioaerosol characteristics in a paediatric intensive care unit. He C; Mackay IM; Ramsay K; Liang Z; Kidd T; Knibbs LD; Johnson G; McNeale D; Stockwell R; Coulthard MG; Long DA; Williams TJ; Duchaine C; Smith N; Wainwright C; Morawska L Environ Int; 2017 Oct; 107():89-99. PubMed ID: 28692913 [TBL] [Abstract][Full Text] [Related]
43. A holistic modeling framework for estimating the influence of climate change on indoor air quality. Salthammer T; Zhao J; Schieweck A; Uhde E; Hussein T; Antretter F; Künzel H; Pazold M; Radon J; Birmili W Indoor Air; 2022 Jun; 32(6):e13039. PubMed ID: 35762234 [TBL] [Abstract][Full Text] [Related]
44. Sources of air pollutants indoors: VOC and fine particulate species. Lewis CW J Expo Anal Environ Epidemiol; 1991 Jan; 1(1):31-44. PubMed ID: 1824310 [TBL] [Abstract][Full Text] [Related]
45. [Dust particles and metals in outdoor and indoor air of Upper Silesia]. Górny RL; Jedrzejczak A; Pastuszka JS Rocz Panstw Zakl Hig; 1995; 46(2):151-61. PubMed ID: 8533033 [TBL] [Abstract][Full Text] [Related]
46. Cooking and electronic cigarettes leading to large differences between indoor and outdoor particle composition and concentration measured by aerosol mass spectrometry. Omelekhina Y; Eriksson A; Canonaco F; Prevot ASH; Nilsson P; Isaxon C; Pagels J; Wierzbicka A Environ Sci Process Impacts; 2020 Jun; 22(6):1382-1396. PubMed ID: 32412028 [TBL] [Abstract][Full Text] [Related]
47. Thirdhand smoke uptake to aerosol particles in the indoor environment. DeCarlo PF; Avery AM; Waring MS Sci Adv; 2018 May; 4(5):eaap8368. PubMed ID: 29750194 [TBL] [Abstract][Full Text] [Related]
48. Effective mass accommodation for partitioning of organic compounds into surface films with different viscosities. Lakey PSJ; Cummings BE; Waring MS; Morrison GC; Shiraiwa M Environ Sci Process Impacts; 2023 Sep; 25(9):1464-1478. PubMed ID: 37560969 [TBL] [Abstract][Full Text] [Related]
49. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico. Holmes HA; Pardyjak ER J Air Waste Manag Assoc; 2014 Jul; 64(7):759-73. PubMed ID: 25122950 [TBL] [Abstract][Full Text] [Related]
50. Indoor and outdoor suspended particulate matter and associated carbonaceous species at residential homes in northwestern Portugal. Custódio D; Pinho I; Cerqueira M; Nunes T; Pio C Sci Total Environ; 2014 Mar; 473-474():72-6. PubMed ID: 24361779 [TBL] [Abstract][Full Text] [Related]
51. Relationships of indoor/outdoor inhalable and respirable particles in domestic environments. Li CS Sci Total Environ; 1994 Jul; 151(3):205-11. PubMed ID: 8085145 [TBL] [Abstract][Full Text] [Related]
52. Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period. Mitsakou C; Housiadas C; Eleftheriadis K; Vratolis S; Helmis C; Asimakopoulos D Indoor Air; 2007 Apr; 17(2):143-52. PubMed ID: 17391237 [TBL] [Abstract][Full Text] [Related]
53. Sampling atmospheric carbonaceous aerosols using an integrated organic gas and particle sampler. Fan X; Brook JR; Mabury SA Environ Sci Technol; 2003 Jul; 37(14):3145-51. PubMed ID: 12901663 [TBL] [Abstract][Full Text] [Related]
54. Particle size dynamics and risk implication of atmospheric aerosols in South-Asian subcontinent. Rohra H; Pipal AS; Tiwari R; Vats P; Masih J; Khare P; Taneja A Chemosphere; 2020 Jun; 249():126140. PubMed ID: 32065995 [TBL] [Abstract][Full Text] [Related]
55. Physico-chemical characterization of indoor/outdoor particulate matter in two residential houses in Oslo, Norway: measurements overview and physical properties--URBAN-AEROSOL Project. Lazaridis M; Aleksandropoulou V; Smolík J; Hansen JE; Glytsos T; Kalogerakis N; Dahlin E Indoor Air; 2006 Aug; 16(4):282-95. PubMed ID: 16842609 [TBL] [Abstract][Full Text] [Related]
56. Penetration of nitrogen oxides and particles from outdoor into indoor air and removal of the pollutants through filtration of incoming air. Partti-Pellinen K; Marttila O; Ahonen A; Suominen O; Haahtela T Indoor Air; 2000 Jun; 10(2):126-32. PubMed ID: 11980102 [TBL] [Abstract][Full Text] [Related]
57. Indoor/outdoor relationships for PM2.5 and associated carbonaceous pollutants at residential homes in Hong Kong - case study. Cao JJ; Lee SC; Chow JC; Cheng Y; Ho KF; Fung K; Liu SX; Watson JG Indoor Air; 2005 Jun; 15(3):197-204. PubMed ID: 15865619 [TBL] [Abstract][Full Text] [Related]
58. Effect of ventilation and filtration on submicrometer particles in an indoor environment. Jamriska M; Morawska L; Clark BA Indoor Air; 2000 Mar; 10(1):19-26. PubMed ID: 10842457 [TBL] [Abstract][Full Text] [Related]
59. Diurnal trends of indoor and outdoor fluorescent biological aerosol particles in a tropical urban area. Li J; Zuraimi S; Schiavon S; Wan MP; Xiong J; Tham KW Sci Total Environ; 2022 Nov; 848():157811. PubMed ID: 35931158 [TBL] [Abstract][Full Text] [Related]
60. Aerosols generated by hardcopy devices and other electrical appliances. Salthammer T; Schripp T; Uhde E; Wensing M Environ Pollut; 2012 Oct; 169():167-74. PubMed ID: 22365641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]