These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35920332)

  • 1. Intratracheally administered LNA gapmer antisense oligonucleotides induce robust gene silencing in mouse lung fibroblasts.
    Shin M; Chan IL; Cao Y; Gruntman AM; Lee J; Sousa J; Rodríguez TC; Echeverria D; Devi G; Debacker AJ; Moazami MP; Krishnamurthy PM; Rembetsy-Brown JM; Kelly K; Yukselen O; Donnard E; Parsons TJ; Khvorova A; Sontheimer EJ; Maehr R; Garber M; Watts JK
    Nucleic Acids Res; 2022 Aug; 50(15):8418-8430. PubMed ID: 35920332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intratracheal administration of locked nucleic acid containing antisense oligonucleotides induced gene silencing and an immune-stimulatory effect in the murine lung.
    Uemura Y; Hagiwara K; Kobayashi K
    PLoS One; 2017; 12(11):e0187286. PubMed ID: 29107995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting murine alveolar macrophages by the intratracheal administration of locked nucleic acid containing antisense oligonucleotides.
    Uemura Y; Kobayashi K
    Drug Deliv; 2019 Dec; 26(1):803-811. PubMed ID: 31385541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA.
    Pendergraff HM; Krishnamurthy PM; Debacker AJ; Moazami MP; Sharma VK; Niitsoo L; Yu Y; Tan YN; Haitchi HM; Watts JK
    Mol Ther Nucleic Acids; 2017 Sep; 8():158-168. PubMed ID: 28918018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholamban Inhibition by a Single Dose of Locked Nucleic Acid Antisense Oligonucleotide Improves Cardiac Contractility in Pressure Overload-Induced Systolic Dysfunction in Mice.
    Morihara H; Yamamoto T; Oiwa H; Tonegawa K; Tsuchiyama D; Kawakatsu I; Obana M; Maeda M; Mohri T; Obika S; Fujio Y; Nakayama H
    J Cardiovasc Pharmacol Ther; 2017 May; 22(3):273-282. PubMed ID: 27811197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense.
    Moschos SA; Frick M; Taylor B; Turnpenny P; Graves H; Spink KG; Brady K; Lamb D; Collins D; Rockel TD; Weber M; Lazari O; Perez-Tosar L; Fancy SA; Lapthorn C; Green MX; Evans S; Selby M; Jones G; Jones L; Kearney S; Mechiche H; Gikunju D; Subramanian R; Uhlmann E; Jurk M; Vollmer J; Ciaramella G; Yeadon M
    Mol Ther; 2011 Dec; 19(12):2163-8. PubMed ID: 21971426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-cell map of antisense oligonucleotide activity in the brain.
    Mortberg MA; Gentile JE; Nadaf NM; Vanderburg C; Simmons S; Dubinsky D; Slamin A; Maldonado S; Petersen CL; Jones N; Kordasiewicz HB; Zhao HT; Vallabh SM; Minikel EV
    Nucleic Acids Res; 2023 Aug; 51(14):7109-7124. PubMed ID: 37188501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity.
    Kashyap AS; Thelemann T; Klar R; Kallert SM; Festag J; Buchi M; Hinterwimmer L; Schell M; Michel S; Jaschinski F; Zippelius A
    J Immunother Cancer; 2019 Mar; 7(1):67. PubMed ID: 30871609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Kinase C-α is a Critical Protein for Antisense Oligonucleotide-mediated Silencing in Mammalian Cells.
    Castanotto D; Lin M; Kowolik C; Koch T; Hansen BR; Oerum H; Stein CA
    Mol Ther; 2016 Jun; 24(6):1117-1125. PubMed ID: 26961407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-Generation Peptide Nucleic Acid Chimeras Exhibit High Affinity and Potent Gene Silencing.
    Debacker AJ; Sharma VK; Meda Krishnamurthy P; O'Reilly D; Greenhill R; Watts JK
    Biochemistry; 2019 Feb; 58(6):582-589. PubMed ID: 30520300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides.
    Dieckmann A; Hagedorn PH; Burki Y; Brügmann C; Berrera M; Ebeling M; Singer T; Schuler F
    Mol Ther Nucleic Acids; 2018 Mar; 10():45-54. PubMed ID: 29499955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LNA-antisense rivals siRNA for gene silencing.
    Jepsen JS; Wengel J
    Curr Opin Drug Discov Devel; 2004 Mar; 7(2):188-94. PubMed ID: 15603252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic acid antisense oligonucleotides.
    Grossen P; Portmann M; Koller E; Duschmalé M; Minz T; Sewing S; Pandya NJ; van Geijtenbeek SK; Ducret A; Kusznir EA; Huber S; Berrera M; Lauer ME; Ringler P; Nordbo B; Jensen ML; Sladojevich F; Jagasia R; Alex R; Gamboni R; Keller M
    Eur J Pharm Biopharm; 2021 Jan; 158():198-210. PubMed ID: 33248268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice.
    Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP
    Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2-A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling.
    Kuespert S; Heydn R; Peters S; Wirkert E; Meyer AL; Siebörger M; Johannesen S; Aigner L; Bogdahn U; Bruun TH
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32178467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Albumin-Binding Fatty Acid-Modified Gapmer Antisense Oligonucleotides for Modulation of Pharmacokinetics.
    Cai Y; Lou C; Wengel J; Howard KA
    Methods Mol Biol; 2020; 2176():163-174. PubMed ID: 32865790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation.
    Hvam ML; Cai Y; Dagnæs-Hansen F; Nielsen JS; Wengel J; Kjems J; Howard KA
    Mol Ther; 2017 Jul; 25(7):1710-1717. PubMed ID: 28641935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.
    Hori SI; Mitsuoka Y; Kugimiya A
    Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.
    Stein CA; Hansen JB; Lai J; Wu S; Voskresenskiy A; Høg A; Worm J; Hedtjärn M; Souleimanian N; Miller P; Soifer HS; Castanotto D; Benimetskaya L; Ørum H; Koch T
    Nucleic Acids Res; 2010 Jan; 38(1):e3. PubMed ID: 19854938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative fluorescence imaging determines the absolute number of locked nucleic acid oligonucleotides needed for suppression of target gene expression.
    Buntz A; Killian T; Schmid D; Seul H; Brinkmann U; Ravn J; Lindholm M; Knoetgen H; Haucke V; Mundigl O
    Nucleic Acids Res; 2019 Jan; 47(2):953-969. PubMed ID: 30462278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.