BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35920441)

  • 1. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit.
    Guhathakurta S; Adams L; Jeong I; Sivakumar A; Cha M; Bernardo Fiadeiro M; Hu HN; Kim YS
    Epigenetics; 2022 Dec; 17(13):2075-2081. PubMed ID: 35920441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK; Kim YS
    Methods Mol Biol; 2024; 2761():81-91. PubMed ID: 38427231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Gene Expression Using dCas9-SunTag Platforms.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2023; 2577():189-195. PubMed ID: 36173574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2018; 1767():419-428. PubMed ID: 29524149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo epigenome editing and transcriptional modulation using CRISPR technology.
    Lau CH; Suh Y
    Transgenic Res; 2018 Dec; 27(6):489-509. PubMed ID: 30284145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS; Jaenisch R
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic editing: Dissecting chromatin function in context.
    Policarpi C; Dabin J; Hackett JA
    Bioessays; 2021 May; 43(5):e2000316. PubMed ID: 33724509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system.
    Anton T; Bultmann S
    Nucleus; 2017 May; 8(3):279-286. PubMed ID: 28448738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances of epigenetic editing.
    Gjaltema RAF; Rots MG
    Curr Opin Chem Biol; 2020 Aug; 57():75-81. PubMed ID: 32619853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.
    Huang YH; Su J; Lei Y; Brunetti L; Gundry MC; Zhang X; Jeong M; Li W; Goodell MA
    Genome Biol; 2017 Sep; 18(1):176. PubMed ID: 28923089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing the Epigenome: Reshaping the Genomic Landscape.
    Holtzman L; Gersbach CA
    Annu Rev Genomics Hum Genet; 2018 Aug; 19():43-71. PubMed ID: 29852072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system.
    Kang JG; Park JS; Ko JH; Kim YS
    Sci Rep; 2019 Aug; 9(1):11960. PubMed ID: 31427598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 in epigenetics studies of health and disease.
    Sar P; Dalai S
    Prog Mol Biol Transl Sci; 2021; 181():309-343. PubMed ID: 34127198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on CRISPR-mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer.
    Chakravarti R; Lenka SK; Gautam A; Singh R; Ravichandiran V; Roy S; Ghosh D
    Curr Drug Targets; 2022; 23(8):836-853. PubMed ID: 35078394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.