These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35920611)

  • 1. A method of classification decision based on multi-BiLSTMs for physical loads hierarchy.
    Wang Y; Zhang C; Zhao Y; Liao Y; Gao Y; Zheng J
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(10):1101-1113. PubMed ID: 35920611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait.
    Lee YJ; Wei MY; Chen YJ
    Gait Posture; 2022 Jul; 96():330-337. PubMed ID: 35785657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking With aBackpack Using Load Distribution and Dynamic Load Compensation Reduces Metabolic Cost and Adaptations to Loads.
    Park JH; Stegall P; Zhang H; Agrawal S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1419-1430. PubMed ID: 27845667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WEARABLE SENSOR-BASED GAIT CLASSIFICATION IN IDIOPATHIC TOE WALKING ADOLESCENTS.
    Kim S; Soangra R; Grant-Beuttler M; Aminian A
    Biomed Sci Instrum; 2019 Apr; 55(2):178-185. PubMed ID: 32214530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction.
    Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
    Sharifi-Renani M; Mahoor MH; Clary CW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculoskeletal stiffness changes linearly in response to increasing load during walking gait.
    Caron RR; Lewis CL; Saltzman E; Wagenaar RC; Holt KG
    J Biomech; 2015 Apr; 48(6):1165-71. PubMed ID: 25678200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rules-Based Real-Time Gait Event Detection Algorithm for Lower-Limb Prosthesis Users during Level-Ground and Ramp Walking.
    Gouda A; Andrysek J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Neural Network-Based Activities Classification, Gait Phase Estimation, and Prediction.
    Yu S; Yang J; Huang TH; Zhu J; Visco CJ; Hameed F; Stein J; Zhou X; Su H
    Ann Biomed Eng; 2023 Jul; 51(7):1471-1484. PubMed ID: 36681749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes to transtibial amputee gait with a weighted backpack on multiple surfaces.
    Doyle SS; Lemaire ED; Besemann M; Dudek NL
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1119-24. PubMed ID: 26476601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of backpack load and positioning on nonlinear gait features in young adults.
    Rodrigues FB; Magnani RM; Lehnen GC; Souza GSSE; Andrade AO; Vieira MF
    Ergonomics; 2018 May; 61(5):720-728. PubMed ID: 29202661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial Sensor Algorithm to Estimate Walk Distance.
    Shah VV; Curtze C; Sowalsky K; Arpan I; Mancini M; Carlson-Kuhta P; El-Gohary M; Horak FB; McNames J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Gait Phase Detection Using Wearable Sensors for Transtibial Prosthesis Based on a kNN Algorithm.
    Rattanasak A; Uthansakul P; Uthansakul M; Jumphoo T; Phapatanaburi K; Sindhupakorn B; Rooppakhun S
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors.
    Zhang J; Lockhart TE; Soangra R
    Ann Biomed Eng; 2014 Mar; 42(3):600-12. PubMed ID: 24081829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of lumbosacral joint compression force profile when walking caused by backpack loads.
    Li SSW; Zheng YP; Chow DHK
    Hum Mov Sci; 2019 Aug; 66():164-172. PubMed ID: 31029838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Gait Events from Accelerations Using Reservoir Computing.
    Chiasson-Poirier L; Younesian H; Turcot K; Sylvestre J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-living and laboratory gait characteristics in patients with multiple sclerosis.
    Storm FA; Nair KPS; Clarke AJ; Van der Meulen JM; Mazzà C
    PLoS One; 2018; 13(5):e0196463. PubMed ID: 29715279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on gait recognition and prediction based on optimized machine learning algorithm].
    Gao J; Ma C; Su H; Wang S; Xu X; Yao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):103-111. PubMed ID: 35231971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.