BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35921240)

  • 21. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.
    Choi GH; Lee HY; Back K
    J Pineal Res; 2017 Aug; 63(1):. PubMed ID: 28378373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants.
    Feng L; Wang K; Li Y; Tan Y; Kong J; Li H; Li Y; Zhu Y
    Plant Cell Rep; 2007 Sep; 26(9):1635-46. PubMed ID: 17458549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering a New Chloroplastic Photorespiratory Bypass to Increase Photosynthetic Efficiency and Productivity in Rice.
    Shen BR; Wang LM; Lin XL; Yao Z; Xu HW; Zhu CH; Teng HY; Cui LL; Liu EE; Zhang JJ; He ZH; Peng XX
    Mol Plant; 2019 Feb; 12(2):199-214. PubMed ID: 30639120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Starch Content in Leaf Sheath Controlled by CO2-Responsive CCT Protein is a Potential Determinant of Photosynthetic Capacity in Rice.
    Morita R; Inoue K; Ikeda KI; Hatanaka T; Misoo S; Fukayama H
    Plant Cell Physiol; 2016 Nov; 57(11):2334-2341. PubMed ID: 27519315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO(2) conductance and CO(2) assimilation in the leaves of transgenic rice plants.
    Hanba YT; Shibasaka M; Hayashi Y; Hayakawa T; Kasamo K; Terashima I; Katsuhara M
    Plant Cell Physiol; 2004 May; 45(5):521-9. PubMed ID: 15169933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensation of decreased triose phosphate/phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco.
    Häusler RE; Schlieben NH; Schulz B; Flügge UI
    Planta; 1998 Mar; 204(3):366-76. PubMed ID: 9530880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing rubisco content in rice leaves.
    Fukayama H; Ueguchi C; Nishikawa K; Katoh N; Ishikawa C; Masumoto C; Hatanaka T; Misoo S
    Plant Cell Physiol; 2012 Jun; 53(6):976-86. PubMed ID: 22470057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of co-overexpression of the genes of Rubisco and transketolase on photosynthesis in rice.
    Suzuki Y; Kondo E; Makino A
    Photosynth Res; 2017 Mar; 131(3):281-289. PubMed ID: 27817054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice.
    Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M
    Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genotypic variation in source and sink traits affects the response of photosynthesis and growth to elevated atmospheric CO
    Fabre D; Dingkuhn M; Yin X; Clément-Vidal A; Roques S; Soutiras A; Luquet D
    Plant Cell Environ; 2020 Mar; 43(3):579-593. PubMed ID: 31961455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transgenic Rice Expressing Ictb and FBP/Sbpase Derived from Cyanobacteria Exhibits Enhanced Photosynthesis and Mesophyll Conductance to CO2.
    Gong HY; Li Y; Fang G; Hu DH; Jin WB; Wang ZH; Li YS
    PLoS One; 2015; 10(10):e0140928. PubMed ID: 26488581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of NAD kinase 2 overexpression on primary metabolite profiles in rice leaves under elevated carbon dioxide.
    Onda Y; Miyagi A; Takahara K; Uchimiya H; Kawai-Yamada M
    Plant Biol (Stuttg); 2014 Jul; 16(4):819-24. PubMed ID: 24397549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triose phosphate utilization in leaves is modulated by whole-plant sink-source ratios and nitrogen budgets in rice.
    Zhou Z; Zhang Z; van der Putten PEL; Fabre D; Dingkuhn M; Struik PC; Yin X
    J Exp Bot; 2023 Nov; 74(21):6692-6707. PubMed ID: 37642225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rice small GTPase, Rab6a, is involved in the regulation of grain yield and iron nutrition in response to CO2 enrichment.
    Yang A; Li Q; Chen L; Zhang WH
    J Exp Bot; 2020 Sep; 71(18):5680-5688. PubMed ID: 32525991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes.
    Takagi D; Inoue H; Odawara M; Shimakawa G; Miyake C
    Plant Cell Physiol; 2014 Feb; 55(2):333-40. PubMed ID: 24406631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of OsTLP27 in rice improves chloroplast function and photochemical efficiency.
    Hu F; Kang Z; Qiu S; Wang Y; Qin F; Yue C; Huang J; Wang G
    Plant Sci; 2012 Oct; 195():125-34. PubMed ID: 22921006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OsαCA1 Affects Photosynthesis, Yield Potential, and Water Use Efficiency in Rice.
    He Y; Duan W; Xue B; Cong X; Sun P; Hou X; Liang YK
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear gene encoding cytosolic triosephosphate isomerase from rice (Oryza sativa L.).
    Xu Y; Harris-Haller LW; McCollum JC; Hardin SH; Hall TC
    Plant Physiol; 1993 Jun; 102(2):697. PubMed ID: 8108523
    [No Abstract]   [Full Text] [Related]  

  • 39. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).
    Kim YS; Kim IS; Bae MJ; Choe YH; Kim YH; Park HM; Kang HG; Yoon HS
    Planta; 2013 Jun; 237(6):1613-25. PubMed ID: 23519921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice.
    Suganami M; Suzuki Y; Tazoe Y; Yamori W; Makino A
    Plant Physiol; 2021 Feb; 185(1):108-119. PubMed ID: 33631807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.