These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Phase-Field Simulations of Tunable Polar Topologies in Lead-Free Ferroelectric/Paraelectric Multilayers with Ultrahigh Energy-Storage Performance. Liu Y; Liu J; Pan H; Cheng X; Hong Z; Xu B; Chen LQ; Nan CW; Lin YH Adv Mater; 2022 Apr; 34(13):e2108772. PubMed ID: 35034410 [TBL] [Abstract][Full Text] [Related]
5. Ultrahigh Energy Efficiency and Large Discharge Energy Density in Flexible Dielectric Nanocomposites with Pb Zou K; He C; Yu Y; Huang J; Fan Z; Lu Y; Huang H; Zhang X; Zhang Q; He Y ACS Appl Mater Interfaces; 2020 Mar; 12(11):12847-12856. PubMed ID: 32084310 [TBL] [Abstract][Full Text] [Related]
6. Colossal Room-Temperature Ferroelectric Polarizations in SrTiO Lin JL; Sun Y; He R; Li Y; Zhong Z; Gao P; Zhao X; Zhang Z; Wang ZJ Nano Lett; 2022 Sep; 22(17):7104-7111. PubMed ID: 35984239 [TBL] [Abstract][Full Text] [Related]
8. Toward Design Rules for Multilayer Ferroelectric Energy Storage Capacitors - A Study Based on Lead-Free and Relaxor-Ferroelectric/Paraelectric Multilayer Devices. Nguyen MD; Houwman EP; Birkhölzer YA; Vu HN; Koster G; Rijnders G Adv Mater; 2024 Jun; 36(26):e2402070. PubMed ID: 38616493 [TBL] [Abstract][Full Text] [Related]
9. Pure Chiral Polar Vortex Phase in PbTiO Das S; McCarter MR; Gómez-Ortiz F; Tang YL; Hong Z; Ghosh A; Shafer P; García-Fernández P; Junquera J; Martin LW; Ramesh R Nano Lett; 2023 Jul; 23(14):6602-6609. PubMed ID: 37449842 [TBL] [Abstract][Full Text] [Related]
10. X-ray diffraction studies of 180 degrees ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Zubko P; Stucki N; Lichtensteiger C; Triscone JM Phys Rev Lett; 2010 May; 104(18):187601. PubMed ID: 20482208 [TBL] [Abstract][Full Text] [Related]
11. Exploring the Pb Acharya M; Banyas E; Ramesh M; Jiang Y; Fernandez A; Dasgupta A; Ling H; Hanrahan B; Persson K; Neaton JB; Martin LW Adv Mater; 2022 Jan; 34(1):e2105967. PubMed ID: 34599789 [TBL] [Abstract][Full Text] [Related]
12. Designing lead-free antiferroelectrics for energy storage. Xu B; Íñiguez J; Bellaiche L Nat Commun; 2017 May; 8():15682. PubMed ID: 28555655 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of a New Ferroelectric Relaxor Based on a Combination of Antiferroelectric and Paraelectric Systems. Ma CH; Liao YK; Zheng Y; Zhuang S; Lu SC; Shao PW; Chen JW; Lai YH; Yu P; Hu JM; Huang R; Chu YH ACS Appl Mater Interfaces; 2022 May; 14(19):22278-22286. PubMed ID: 35523210 [TBL] [Abstract][Full Text] [Related]
14. Compromise Optimized Superior Energy Storage Performance in Lead-Free Antiferroelectrics by Antiferroelectricity Modulation and Nanodomain Engineering. Chen L; Zhou C; Zhu L; Qi H; Chen J Small; 2024 Feb; 20(7):e2306486. PubMed ID: 37803415 [TBL] [Abstract][Full Text] [Related]
15. Energy Storage Properties of Sol-Gel-Processed SrTiO Liu J; Wang Y; Zhai X; Xue Y; Hao L; Zhu H; Liu C; Cheng H; Ouyang J Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614370 [TBL] [Abstract][Full Text] [Related]
17. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO Li B; Yan Z; Zhou X; Qi H; Koval V; Luo X; Luo H; Yan H; Zhang D ACS Appl Mater Interfaces; 2023 Jan; 15(3):4246-4256. PubMed ID: 36639350 [TBL] [Abstract][Full Text] [Related]