These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35921435)

  • 1. Fermionic wave functions from neural-network constrained hidden states.
    Robledo Moreno J; Carleo G; Georges A; Stokes J
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2122059119. PubMed ID: 35921435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feed-forward neural network based variational wave function for the fermionic Hubbard model in one dimension.
    Sarder MTH; Medhi A
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35772394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermionic neural-network states for ab-initio electronic structure.
    Choo K; Mezzacapo A; Carleo G
    Nat Commun; 2020 May; 11(1):2368. PubMed ID: 32398658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unbiasing fermionic quantum Monte Carlo with a quantum computer.
    Huggins WJ; O'Gorman BA; Rubin NC; Reichman DR; Babbush R; Lee J
    Nature; 2022 Mar; 603(7901):416-420. PubMed ID: 35296841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories.
    Luo D; Carleo G; Clark BK; Stokes J
    Phys Rev Lett; 2021 Dec; 127(27):276402. PubMed ID: 35061436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems.
    Vicentini F; Biella A; Regnault N; Ciuti C
    Phys Rev Lett; 2019 Jun; 122(25):250503. PubMed ID: 31347877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions.
    Luo D; Clark BK
    Phys Rev Lett; 2019 Jun; 122(22):226401. PubMed ID: 31283262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing the energy of a water molecule using multideterminants: a simple, efficient algorithm.
    Clark BK; Morales MA; McMinis J; Kim J; Scuseria GE
    J Chem Phys; 2011 Dec; 135(24):244105. PubMed ID: 22225142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projector Quantum Monte Carlo Method for Nonlinear Wave Functions.
    Schwarz LR; Alavi A; Booth GH
    Phys Rev Lett; 2017 Apr; 118(17):176403. PubMed ID: 28498711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbatively Selected Configuration-Interaction Wave Functions for Efficient Geometry Optimization in Quantum Monte Carlo.
    Dash M; Moroni S; Scemama A; Filippi C
    J Chem Theory Comput; 2018 Aug; 14(8):4176-4182. PubMed ID: 29953810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo.
    Nakano K; Attaccalite C; Barborini M; Capriotti L; Casula M; Coccia E; Dagrada M; Genovese C; Luo Y; Mazzola G; Zen A; Sorella S
    J Chem Phys; 2020 May; 152(20):204121. PubMed ID: 32486669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensor Network Representations of Parton Wave Functions.
    Wu YH; Wang L; Tu HH
    Phys Rev Lett; 2020 Jun; 124(24):246401. PubMed ID: 32639802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving condensed-matter ground-state problems by semidefinite relaxations.
    Barthel T; Hübener R
    Phys Rev Lett; 2012 May; 108(20):200404. PubMed ID: 23003130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering Quantum Phase Transitions with Fermionic Neural Networks.
    Cassella G; Sutterud H; Azadi S; Drummond ND; Pfau D; Spencer JS; Foulkes WMC
    Phys Rev Lett; 2023 Jan; 130(3):036401. PubMed ID: 36763402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry-Projected Jastrow Mean-Field Wave Function in Variational Monte Carlo.
    Mahajan A; Sharma S
    J Phys Chem A; 2019 May; 123(17):3911-3921. PubMed ID: 30945859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite fermion-boson mapping for fermionic lattice models.
    Zhao J; Jiménez-Hoyos CA; Scuseria GE; Huerga D; Dukelsky J; Rombouts SM; Ortiz G
    J Phys Condens Matter; 2014 Nov; 26(45):455601. PubMed ID: 25318823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules.
    Toulouse J; Umrigar CJ
    J Chem Phys; 2008 May; 128(17):174101. PubMed ID: 18465904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited electronic state calculations by the transcorrelated variational Monte Carlo method: application to a helium atom.
    Umezawa N; Tsuneyuki S
    J Chem Phys; 2004 Oct; 121(15):7070-5. PubMed ID: 15473772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermionic-propagator and alternating-basis quantum Monte Carlo methods for correlated electrons on a lattice.
    Janković V; Vučičević J
    J Chem Phys; 2023 Jan; 158(4):044108. PubMed ID: 36725525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.