These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 35921524)
1. Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance. Serra V; Wang AT; Castroviejo-Bermejo M; Polanska UM; Palafox M; Herencia-Ropero A; Jones GN; Lai Z; Armenia J; Michopoulos F; Llop-Guevara A; Brough R; Gulati A; Pettitt SJ; Bulusu KC; Nikkilä J; Wilson Z; Hughes A; Wijnhoven PWG; Ahmed A; Bruna A; Gris-Oliver A; Guzman M; Rodríguez O; Grueso J; Arribas J; Cortés J; Saura C; Lau A; Critchlow S; Dougherty B; Caldas C; Mills GB; Barrett JC; Forment JV; Cadogan E; Lord CJ; Cruz C; Balmaña J; O'Connor MJ Clin Cancer Res; 2022 Oct; 28(20):4536-4550. PubMed ID: 35921524 [TBL] [Abstract][Full Text] [Related]
2. ATR, CHK1 and WEE1 inhibitors cause homologous recombination repair deficiency to induce synthetic lethality with PARP inhibitors. Smith HL; Willmore E; Prendergast L; Curtin NJ Br J Cancer; 2024 Sep; 131(5):905-917. PubMed ID: 38965423 [TBL] [Abstract][Full Text] [Related]
3. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Herencia-Ropero A; Llop-Guevara A; Staniszewska AD; Domènech-Vivó J; García-Galea E; Moles-Fernández A; Pedretti F; Domènech H; Rodríguez O; Guzmán M; Arenas EJ; Verdaguer H; Calero-Nieto FJ; Talbot S; Tobalina L; Leo E; Lau A; Nuciforo P; Dienstmann R; Macarulla T; Arribas J; Díez O; Gutiérrez-Enríquez S; Forment JV; O'Connor MJ; Albertella M; Balmaña J; Serra V Genome Med; 2024 Aug; 16(1):107. PubMed ID: 39187844 [TBL] [Abstract][Full Text] [Related]
4. Combination ATR (ceralasertib) and PARP (olaparib) Inhibitor (CAPRI) Trial in Acquired PARP Inhibitor-Resistant Homologous Recombination-Deficient Ovarian Cancer. Wethington SL; Shah PD; Martin L; Tanyi JL; Latif N; Morgan M; Torigian DA; Rodriguez D; Smith SA; Dean E; Domchek SM; Drapkin R; Shih IM; Brown EJ; Hwang WT; Armstrong DK; Gaillard S; Giuntoli R; Simpkins F Clin Cancer Res; 2023 Aug; 29(15):2800-2807. PubMed ID: 37097611 [TBL] [Abstract][Full Text] [Related]
5. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness. Gralewska P; Gajek A; Marczak A; Mikuła M; Ostrowski J; Śliwińska A; Rogalska A Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352723 [TBL] [Abstract][Full Text] [Related]
6. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Kim H; Xu H; George E; Hallberg D; Kumar S; Jagannathan V; Medvedev S; Kinose Y; Devins K; Verma P; Ly K; Wang Y; Greenberg RA; Schwartz L; Johnson N; Scharpf RB; Mills GB; Zhang R; Velculescu VE; Brown EJ; Simpkins F Nat Commun; 2020 Jul; 11(1):3726. PubMed ID: 32709856 [TBL] [Abstract][Full Text] [Related]
7. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Haynes B; Murai J; Lee JM Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007 [TBL] [Abstract][Full Text] [Related]
8. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Yazinski SA; Comaills V; Buisson R; Genois MM; Nguyen HD; Ho CK; Todorova Kwan T; Morris R; Lauffer S; Nussenzweig A; Ramaswamy S; Benes CH; Haber DA; Maheswaran S; Birrer MJ; Zou L Genes Dev; 2017 Feb; 31(3):318-332. PubMed ID: 28242626 [TBL] [Abstract][Full Text] [Related]
9. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Gupta N; Huang TT; Horibata S; Lee JM Pharmacol Res; 2022 Apr; 178():106162. PubMed ID: 35259479 [TBL] [Abstract][Full Text] [Related]
10. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in Kim H; George E; Ragland R; Rafail S; Zhang R; Krepler C; Morgan M; Herlyn M; Brown E; Simpkins F Clin Cancer Res; 2017 Jun; 23(12):3097-3108. PubMed ID: 27993965 [No Abstract] [Full Text] [Related]
11. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous Gralewska P; Gajek A; Rybaczek D; Marczak A; Rogalska A Cells; 2022 Jun; 11(12):. PubMed ID: 35741017 [TBL] [Abstract][Full Text] [Related]
12. ALDH1A1 Contributes to PARP Inhibitor Resistance via Enhancing DNA Repair in BRCA2 Liu L; Cai S; Han C; Banerjee A; Wu D; Cui T; Xie G; Zhang J; Zhang X; McLaughlin E; Yin M; Backes FJ; Chakravarti A; Zheng Y; Wang QE Mol Cancer Ther; 2020 Jan; 19(1):199-210. PubMed ID: 31534014 [TBL] [Abstract][Full Text] [Related]
15. The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Parmar K; Kochupurakkal BS; Lazaro JB; Wang ZC; Palakurthi S; Kirschmeier PT; Yang C; Sambel LA; Färkkilä A; Reznichenko E; Reavis HD; Dunn CE; Zou L; Do KT; Konstantinopoulos PA; Matulonis UA; Liu JF; D'Andrea AD; Shapiro GI Clin Cancer Res; 2019 Oct; 25(20):6127-6140. PubMed ID: 31409614 [TBL] [Abstract][Full Text] [Related]
16. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Cruz C; Castroviejo-Bermejo M; Gutiérrez-Enríquez S; Llop-Guevara A; Ibrahim YH; Gris-Oliver A; Bonache S; Morancho B; Bruna A; Rueda OM; Lai Z; Polanska UM; Jones GN; Kristel P; de Bustos L; Guzman M; Rodríguez O; Grueso J; Montalban G; Caratú G; Mancuso F; Fasani R; Jiménez J; Howat WJ; Dougherty B; Vivancos A; Nuciforo P; Serres-Créixams X; Rubio IT; Oaknin A; Cadogan E; Barrett JC; Caldas C; Baselga J; Saura C; Cortés J; Arribas J; Jonkers J; Díez O; O'Connor MJ; Balmaña J; Serra V Ann Oncol; 2018 May; 29(5):1203-1210. PubMed ID: 29635390 [TBL] [Abstract][Full Text] [Related]
17. The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Wilson AJ; Stubbs M; Liu P; Ruggeri B; Khabele D Gynecol Oncol; 2018 Jun; 149(3):575-584. PubMed ID: 29567272 [TBL] [Abstract][Full Text] [Related]
18. Developing patient-derived organoids to predict PARP inhibitor response and explore resistance overcoming strategies in ovarian cancer. Tao M; Sun F; Wang J; Wang Y; Zhu H; Chen M; Liu L; Liu L; Lin H; Wu X Pharmacol Res; 2022 May; 179():106232. PubMed ID: 35462012 [TBL] [Abstract][Full Text] [Related]
19. The effect of the triazene compound CT913 on ovarian cancer cells in vitro and its synergistic interaction with the PARP-inhibitor olaparib. Wichmann C; Klotz DM; Zeiler HJ; Hilger RA; Grützmann K; Krüger A; Aust D; Wimberger P; Kuhlmann JD Gynecol Oncol; 2020 Dec; 159(3):850-859. PubMed ID: 32980128 [TBL] [Abstract][Full Text] [Related]
20. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2 Biegała Ł; Gajek A; Szymczak-Pajor I; Marczak A; Śliwińska A; Rogalska A Sci Rep; 2023 Dec; 13(1):22659. PubMed ID: 38114660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]