These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35921702)

  • 1. Sensitivity analysis of sex- and functional muscle group-specific parameters for a three-compartment-controller model of muscle fatigue.
    Rakshit R; Barman S; Xiang Y; Yang J
    J Biomech; 2022 Aug; 141():111224. PubMed ID: 35921702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional muscle group- and sex-specific parameters for a three-compartment controller muscle fatigue model applied to isometric contractions.
    Rakshit R; Xiang Y; Yang J
    J Biomech; 2021 Oct; 127():110695. PubMed ID: 34454329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of a three-compartment muscle fatigue model to predict peak torque decline during intermittent tasks.
    Looft JM; Herkert N; Frey-Law L
    J Biomech; 2018 Aug; 77():16-25. PubMed ID: 29960732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting a fatigue model for shoulder flexion fatigue: Enhancing recovery rate during intermittent rest intervals.
    Looft JM; Frey-Law LA
    J Biomech; 2020 Jun; 106():109762. PubMed ID: 32517992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet analysis of electromyography for back muscle fatigue detection during isokinetic constant-torque exertions.
    Sparto PJ; Parnianpour M; Barria EA; Jagadeesh JM
    Spine (Phila Pa 1976); 1999 Sep; 24(17):1791-8. PubMed ID: 10488509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related fatigue resistance in the knee extensor muscles is specific to contraction mode.
    Callahan DM; Foulis SA; Kent-Braun JA
    Muscle Nerve; 2009 May; 39(5):692-702. PubMed ID: 19347926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man.
    Pethick J; Winter SL; Burnley M
    J Physiol; 2015 Apr; 593(8):2085-96. PubMed ID: 25664928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling muscle recovery from a fatigued state in isometric contractions for the ankle joint.
    Rakshit R; Yang J
    J Biomech; 2020 Feb; 100():109601. PubMed ID: 31952819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sex on torque, recovery, EMG, and MMG responses to fatigue.
    Hill EC; Housh TJ; Smith CM; Cochrane KC; Jenkins NDM; Cramer JT; Schmidt RJ; Johnson GO
    J Musculoskelet Neuronal Interact; 2016 Dec; 16(4):310-317. PubMed ID: 27973383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model-based estimation of critical torques reduces the experimental effort compared to conventional testing.
    Herold JL; Sommer A
    Eur J Appl Physiol; 2020 Jun; 120(6):1263-1276. PubMed ID: 32277257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular fatigue following isometric contractions with similar torque time integral.
    Rozand V; Cattagni T; Theurel J; Martin A; Lepers R
    Int J Sports Med; 2015 Jan; 36(1):35-40. PubMed ID: 25285471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions.
    Merletti R; Roy S
    J Orthop Sports Phys Ther; 1996 Dec; 24(6):342-53. PubMed ID: 8938600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle fatigue during dynamic contractions assessed by new spectral indices.
    Dimitrov GV; Arabadzhiev TI; Mileva KN; Bowtell JL; Crichton N; Dimitrova NA
    Med Sci Sports Exerc; 2006 Nov; 38(11):1971-9. PubMed ID: 17095932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue reduces the complexity of knee extensor torque during fatiguing sustained isometric contractions.
    Pethick J; Winter SL; Burnley M
    Eur J Sport Sci; 2019 Nov; 19(10):1349-1358. PubMed ID: 30955469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in fatigue resistance are muscle group dependent.
    Avin KG; Naughton MR; Ford BW; Moore HE; Monitto-Webber MN; Stark AM; Gentile AJ; Law LA
    Med Sci Sports Exerc; 2010 Oct; 42(10):1943-50. PubMed ID: 20195184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submaximal fatigue and recovery in boys and men.
    Hatzikotoulas K; Patikas D; Bassa E; Hadjileontiadis L; Koutedakis Y; Kotzamanidis C
    Int J Sports Med; 2009 Oct; 30(10):741-6. PubMed ID: 19585398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ipsilateral and contralateral fatigue and muscle blood flow occlusion on the complexity of knee-extensor torque output in humans.
    Pethick J; Winter SL; Burnley M
    Exp Physiol; 2018 Jul; 103(7):956-967. PubMed ID: 29719079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knee extensor fatigue resistance of young and older men and women performing sustained and brief intermittent isometric contractions.
    Mcphee JS; Maden-Wilkinson TM; Narici MV; Jones DA; Degens H
    Muscle Nerve; 2014 Sep; 50(3):393-400. PubMed ID: 24408784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular fatigue development during maximal concentric and isometric knee extensions.
    Babault N; Desbrosses K; Fabre MS; Michaut A; Pousson M
    J Appl Physiol (1985); 2006 Mar; 100(3):780-5. PubMed ID: 16282433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Torque loss induced by repetitive maximal eccentric contractions is marginally influenced by work-to-rest ratio.
    McNeil CJ; Allman BL; Symons TB; Vandervoort AA; Rice CL
    Eur J Appl Physiol; 2004 May; 91(5-6):579-85. PubMed ID: 14648129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.