These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 35921898)
1. Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. Howard JD; Beghyn M; Dewulf N; De Vos Y; Philips A; Portwood D; Kilby PM; Oliver D; Maddelein W; Brown S; Dickman MJ J Biol Chem; 2022 Sep; 298(9):102311. PubMed ID: 35921898 [TBL] [Abstract][Full Text] [Related]
2. Double strand RNA delivery system for plant-sap-feeding insects. Ghosh SK; Hunter WB; Park AL; Gundersen-Rindal DE PLoS One; 2017; 12(2):e0171861. PubMed ID: 28182760 [TBL] [Abstract][Full Text] [Related]
3. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects. Ghosh SKB; Hunter WB; Park AL; Gundersen-Rindal DE J Vis Exp; 2018 May; (135):. PubMed ID: 29782023 [TBL] [Abstract][Full Text] [Related]
4. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Castellanos NL; Smagghe G; Sharma R; Oliveira EE; Christiaens O Pest Manag Sci; 2019 Feb; 75(2):537-548. PubMed ID: 30094917 [TBL] [Abstract][Full Text] [Related]
5. Development of RNAi methods to control the harlequin bug, Murgantia histrionica. Howell JL; Mogilicherla K; Gurusamy D; Palli SR Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21690. PubMed ID: 32394499 [TBL] [Abstract][Full Text] [Related]
6. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Zhang H; Li HC; Miao XX Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822 [TBL] [Abstract][Full Text] [Related]
7. Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Rangasamy M; Siegfried BD Pest Manag Sci; 2012 Apr; 68(4):587-91. PubMed ID: 22500293 [TBL] [Abstract][Full Text] [Related]
8. Enhancing RNAi by using concatemerized double-stranded RNA. Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906 [TBL] [Abstract][Full Text] [Related]
9. Delivery of short hairpin RNA in the neotropical brown stink bug, Euschistus heros, using a composite nanomaterial. Laisney J; Loczenski Rose V; Watters K; Donohue KV; Unrine JM Pestic Biochem Physiol; 2021 Aug; 177():104906. PubMed ID: 34301367 [TBL] [Abstract][Full Text] [Related]
11. Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (Diabrotica virgifera virgifera) and Neotropical brown stink bug (Euschistus heros). Fishilevich E; Vélez AM; Khajuria C; Frey ML; Hamm RL; Wang H; Schulenberg GA; Bowling AJ; Pence HE; Gandra P; Arora K; Storer NP; Narva KE; Siegfried BD Insect Biochem Mol Biol; 2016 Apr; 71():58-71. PubMed ID: 26873291 [TBL] [Abstract][Full Text] [Related]
12. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300 [TBL] [Abstract][Full Text] [Related]
13. Transport of orally delivered dsRNA in southern green stink bug, Nezara viridula. Gurusamy D; Howell JL; Chereddy SCRR; Koo J; Palli SR Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21692. PubMed ID: 32441400 [TBL] [Abstract][Full Text] [Related]
14. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. Sharma R; Christiaens O; Taning CN; Smagghe G Pest Manag Sci; 2021 Jan; 77(1):77-84. PubMed ID: 32696565 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. Nishide Y; Kageyama D; Tanaka Y; Yokoi K; Jouraku A; Futahashi R; Fukatsu T PLoS One; 2021; 16(1):e0245081. PubMed ID: 33444324 [TBL] [Abstract][Full Text] [Related]
17. Fusion dsRNA designs incorporating multiple target sequences can enhance the aphid control capacity of an RNAi-based strategy. Wang ZG; Qin CY; Chen Y; Yu XY; Chen RY; Niu J; Wang JJ Pest Manag Sci; 2024 Jun; 80(6):2689-2697. PubMed ID: 38327015 [TBL] [Abstract][Full Text] [Related]
18. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Abdellatef E; Kamal NM; Tsujimoto H Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307 [TBL] [Abstract][Full Text] [Related]
19. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests. Garbatti Factor B; de Moura Manoel Bento F; Figueira A Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524 [TBL] [Abstract][Full Text] [Related]
20. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. Zha W; Peng X; Chen R; Du B; Zhu L; He G PLoS One; 2011; 6(5):e20504. PubMed ID: 21655219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]