BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35921955)

  • 1. Mast cells promote viral entry of SARS-CoV-2 via formation of chymase/spike protein complex.
    Liu S; Suzuki Y; Takemasa E; Watanabe R; Mogi M
    Eur J Pharmacol; 2022 Sep; 930():175169. PubMed ID: 35921955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of Chymase, Tryptase, and IL-1β from Human Mast Cells, Augmented by IL-33.
    Tsilioni I; Theoharides TC
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19.
    Li K; Meyerholz DK; Bartlett JA; McCray PB
    mBio; 2021 Aug; 12(4):e0097021. PubMed ID: 34340553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SARS-CoV-2 hijacks macropinocytosis to facilitate its entry and promote viral spike-mediated cell-to-cell fusion.
    Zhang YY; Liang R; Wang SJ; Ye ZW; Wang TY; Chen M; Liu J; Na L; Yang YL; Yang YB; Yuan S; Yin X; Cai XH; Tang YD
    J Biol Chem; 2022 Nov; 298(11):102511. PubMed ID: 36259516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
    Essalmani R; Jain J; Susan-Resiga D; Andréo U; Evagelidis A; Derbali RM; Huynh DN; Dallaire F; Laporte M; Delpal A; Sutto-Ortiz P; Coutard B; Mapa C; Wilcoxen K; Decroly E; Nq Pham T; Cohen ÉA; Seidah NG
    J Virol; 2022 Apr; 96(8):e0012822. PubMed ID: 35343766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severity of SARS-CoV-2 infection is associated with high numbers of alveolar mast cells and their degranulation.
    Krysko O; Bourne JH; Kondakova E; Galova EA; Whitworth K; Newby ML; Bachert C; Hill H; Crispin M; Stamataki Z; Cunningham AF; Pugh M; Khan AO; Rayes J; Vedunova M; Krysko DV; Brill A
    Front Immunol; 2022; 13():968981. PubMed ID: 36225927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways.
    Laporte M; Raeymaekers V; Van Berwaer R; Vandeput J; Marchand-Casas I; Thibaut HJ; Van Looveren D; Martens K; Hoffmann M; Maes P; Pöhlmann S; Naesens L; Stevaert A
    PLoS Pathog; 2021 Apr; 17(4):e1009500. PubMed ID: 33886690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion.
    Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q
    mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
    Hoffmann M; Kleine-Weber H; Schroeder S; Krüger N; Herrler T; Erichsen S; Schiergens TS; Herrler G; Wu NH; Nitsche A; Müller MA; Drosten C; Pöhlmann S
    Cell; 2020 Apr; 181(2):271-280.e8. PubMed ID: 32142651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.
    Qian Z; Dominguez SR; Holmes KV
    PLoS One; 2013; 8(10):e76469. PubMed ID: 24098509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains.
    Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T
    mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein.
    Yamamoto M; Gohda J; Kobayashi A; Tomita K; Hirayama Y; Koshikawa N; Seiki M; Semba K; Akiyama T; Kawaguchi Y; Inoue JI
    mBio; 2022 Aug; 13(4):e0051922. PubMed ID: 35708281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease.
    Stevaert A; Van Berwaer R; Mestdagh C; Vandeput J; Vanstreels E; Raeymaekers V; Laporte M; Naesens L
    mBio; 2022 Aug; 13(4):e0137622. PubMed ID: 35913162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner.
    Lavie M; Dubuisson J; Belouzard S
    J Virol; 2022 Jul; 96(13):e0047422. PubMed ID: 35678602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry.
    Kastenhuber ER; Mercadante M; Nilsson-Payant B; Johnson JL; Jaimes JA; Muecksch F; Weisblum Y; Bram Y; Chandar V; Whittaker GR; tenOever BR; Schwartz RE; Cantley L
    Elife; 2022 Mar; 11():. PubMed ID: 35294338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of Furin Cleavage Site and Further SARS-CoV-2 Evolution Change the Mechanisms of Viral Entry, Infection Spread, and Cell Signaling.
    Frolova EI; Palchevska O; Lukash T; Dominguez F; Britt W; Frolov I
    J Virol; 2022 Aug; 96(15):e0075322. PubMed ID: 35876526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target.
    Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S
    Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein.
    Ragotte RJ; Pulido D; Donnellan FR; Hill ML; Gorini G; Davies H; Brun J; McHugh K; King LDW; Skinner K; Miura K; Long CA; Zitzmann N; Draper SJ
    mSphere; 2021 Aug; 6(4):e0064721. PubMed ID: 34378982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine.
    Tai W; He L; Zhang X; Pu J; Voronin D; Jiang S; Zhou Y; Du L
    Cell Mol Immunol; 2020 Jun; 17(6):613-620. PubMed ID: 32203189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.