These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35922350)

  • 1. Theory of magnetic-field effect on trions in two-dimensional materials.
    Chang YW; Chang YC
    J Chem Phys; 2022 Jul; 157(4):044104. PubMed ID: 35922350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variationally optimized orbital approach to trions in two-dimensional materials.
    Chang YW; Chang YC
    J Chem Phys; 2021 Jul; 155(2):024110. PubMed ID: 34266270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trion Photoluminescence and Trion Stability in Atomically Thin Semiconductors.
    Perea-Causin R; Brem S; Schmidt O; Malic E
    Phys Rev Lett; 2024 Jan; 132(3):036903. PubMed ID: 38307073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gate Tunable Dark Trions in Monolayer WSe_{2}.
    Liu E; van Baren J; Lu Z; Altaiary MM; Taniguchi T; Watanabe K; Smirnov D; Lui CH
    Phys Rev Lett; 2019 Jul; 123(2):027401. PubMed ID: 31386514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties.
    Ayari S; Quick MT; Owschimikow N; Christodoulou S; Bertrand GHV; Artemyev M; Moreels I; Woggon U; Jaziri S; Achtstein AW
    Nanoscale; 2020 Jul; 12(27):14448-14458. PubMed ID: 32618327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors.
    Rana F; Koksal O; Jung M; Shvets G; Vamivakas AN; Manolatou C
    Phys Rev Lett; 2021 Mar; 126(12):127402. PubMed ID: 33834815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics.
    Filikhin I; Kezerashvili RY; Tsiklauri SM; Vlahovic B
    Nanotechnology; 2018 Mar; 29(12):124002. PubMed ID: 29350620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of Trion State in Gated Monolayer MoSe
    Li Z; Qin F; Ong CS; Huang J; Xu Z; Chen P; Qiu C; Zhang X; Zhang C; Zhang X; Eriksson O; Rubio A; Tang P; Yuan H
    Nano Lett; 2023 Nov; 23(22):10282-10289. PubMed ID: 37906179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polaronic Trions at the MoS
    Sarkar S; Goswami S; Trushin M; Saha S; Panahandeh-Fard M; Prakash S; Tan SJR; Scott M; Loh KP; Adam S; Mathew S; Venkatesan T
    Adv Mater; 2019 Oct; 31(41):e1903569. PubMed ID: 31448503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Defect-Induced Trion in Monolayer WS
    Sebait R; Biswas C; Song B; Seo C; Lee YH
    ACS Nano; 2021 Feb; 15(2):2849-2857. PubMed ID: 33470093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes.
    Park JS; Hirana Y; Mouri S; Miyauchi Y; Nakashima N; Matsuda K
    J Am Chem Soc; 2012 Sep; 134(35):14461-6. PubMed ID: 22870955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited Biexcitons in Transition Metal Dichalcogenides.
    Zhang DK; Kidd DW; Varga K
    Nano Lett; 2015 Oct; 15(10):7002-5. PubMed ID: 26422057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of Trions and Biexcitons in Layered Hybrid Organic-Inorganic Lead Halide Perovskites.
    Cho Y; Greene SM; Berkelbach TC
    Phys Rev Lett; 2021 May; 126(21):216402. PubMed ID: 34114841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of Gate-Tunable Dark Trions in Monolayer WSe
    Li Z; Wang T; Lu Z; Khatoniar M; Lian Z; Meng Y; Blei M; Taniguchi T; Watanabe K; McGill SA; Tongay S; Menon VM; Smirnov D; Shi SF
    Nano Lett; 2019 Oct; 19(10):6886-6893. PubMed ID: 31487988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-State Trions in Monolayer WS_{2}.
    Arora A; Deilmann T; Reichenauer T; Kern J; Michaelis de Vasconcellos S; Rohlfing M; Bratschitsch R
    Phys Rev Lett; 2019 Oct; 123(16):167401. PubMed ID: 31702327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers.
    Zhumagulov YV; Vagov A; Gulevich DR; Perebeinos V
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks.
    Wieland S; El Yumin AA; Gotthardt JM; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3112-3122. PubMed ID: 36824583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
    Bellus MZ; Ceballos F; Chiu HY; Zhao H
    ACS Nano; 2015 Jun; 9(6):6459-64. PubMed ID: 26046238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe
    Lyons TP; Dufferwiel S; Brooks M; Withers F; Taniguchi T; Watanabe K; Novoselov KS; Burkard G; Tartakovskii AI
    Nat Commun; 2019 May; 10(1):2330. PubMed ID: 31133703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric-Field-Driven Trion Drift and Funneling in MoSe
    Lee SW; Choi WH; Cho H; Lee SH; Choi W; Joo J; Lee D; Gong SH
    Nano Lett; 2023 May; 23(10):4282-4289. PubMed ID: 37167152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.